Cho a>0, b>0 và \(a+b\le1\)
Tìm GTNN của biểu thức S= \(\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)
Cho a>0, b>0, \(a+b\le1\)
tìm giá trị nhỏ nhất của biểu thức S=\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)
Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)
\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)
\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)
\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)
Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)
Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)
\(\Rightarrow S\ge\frac{8}{5}.\)
Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
cho a,b,c>0 và a+b+c<=3/2 . Tìm GTNN của biểu thức:
\(S=a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
Cho a > 0, b > 0 và \(a+b\le1\). Tìm giá trị nhỏ nhất của biểu thức: \(S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)
\(S=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\ge\frac{1}{1+\frac{1}{2}}+1=\frac{5}{3}\)
\(\Rightarrow S_{min}=\frac{5}{3}\) khi \(a=b=\frac{1}{2}\)
Cho a,b,c>0; \(a+b+c\le\frac{3}{2}\)Tìm GTNN của biểu thức \(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
S = a+b+c + (1/a + 1/b + 1/c)
>= (a+b+c) + 9/a+b+c
= [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)
>= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\) + 27/(4.3/2)
= 3 + 9/2
= 15/2
Dấu "=" xảy ra <=> a=b=c=1/2
Vậy ......
Tk mk nha
bài này còn có thể theo phương pháp chọn điểm rơi trong bài toán cực trị, bạn thử tìm hiểu nhé!!!!
cho \(a,b>0\)và \(a+b\le1\)tìm GTNN của A=\(\frac{1}{^{a^2}}+\frac{1}{b^2}+\frac{1}{a+b}+ab\)
Cho a,b>0 thỏa mãn \(a+\frac{1}{b}\le1\). Tìm GTNN của \(A=\frac{a}{b}+\frac{b}{a}\)
Ta có : \(a+\frac{1}{b}\le1\Leftrightarrow\frac{ab+1}{b}\le1\Rightarrow ab+1\le b\) ( vì a ; b > 0 )
Mặt khác : \(2\sqrt{ab}\le ab+1\) ( BĐT Cô - si )
Suy ra : \(b\ge2\sqrt{ab}\Leftrightarrow\sqrt{b}\ge2\sqrt{a}\Leftrightarrow\frac{b}{a}\ge4\)
Đặt b/a = t ( t >= 4 ) , ta có : \(A=\frac{1}{t}+t=\frac{1}{t}+\frac{t}{16}+\frac{15}{16}t\)
Đến đây bn làm nốt
Cho a,b>0 thỏa mãn \(a+b\le1\). Tìm gtnn của \(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\)
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Cho a,b > 0 và a+b=1 . tính GTNN của biểu thức \(S=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)
\(S=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=1+\frac{1}{a}+\frac{1}{b}+\frac{a+b}{ab}=1+\frac{2}{a}+\frac{2}{b}\ge1+\frac{\left(\sqrt{2}+\sqrt{2}\right)^2}{a+b}=9\)
\(=>minS=9<=>a=b=\frac{1}{2}\)
( cái này dùng cosi hoặc bun đều đc vì a,b>0 nếu p để ý :P )