Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Triều
Xem chi tiết
Phạm Tuấn Kiệt
21 tháng 11 2015 lúc 17:01

Áp dụng bất đẳng thức Cosi, ta có: 
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được: 
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1) 
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2

Đúng thì tick nhé !

Nguyễn Thiên Ánh
17 tháng 11 2017 lúc 16:13

mk ko bt

dekhisuki
Xem chi tiết
Phùng Minh Quân
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Nguyen Duy Dai
Xem chi tiết
nguyenchieubao
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 9 2017 lúc 10:39

ta có:

\(S\ge\frac{x^3}{x^2+y^2+\frac{x^2+y^2}{2}}+\frac{y^3}{y^2+z^2+\frac{y^2+z^2}{2}}+\frac{z^3}{z^2+x^2+\frac{z^2+x^2}{2}}\)

\(\Rightarrow S\ge\frac{2x^3}{3\left(x^2+y^2\right)}+\frac{2y^3}{3\left(y^2+z^2\right)}+\frac{2z^3}{3\left(z^2+x^2\right)}\Rightarrow\frac{3}{2}S\ge P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\)

\(\Rightarrow P=x-\frac{xy^2}{x^2+y^2}+y-\frac{yz^2}{y^2+z^2}+z-\frac{zx^2}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{xy^2}{2xy}+\frac{yz^2}{2yz}+\frac{zx^2}{2xz}\right)\)

\(=\left(x+y+z\right)-\frac{1}{2}\left(x+y+z\right)=\frac{9}{2}\)

\(\Rightarrow\frac{3}{2}S\ge\frac{9}{2}\Rightarrow S\ge3\)

Vậy Min S=3 khi x=y=z=3

Le Hung Quoc
23 tháng 9 2017 lúc 9:57

hok lp 6 000000000000 biet toan lp 9 dau ma lm , tk di , giai cho

Nguyễn Bá Hùng
Xem chi tiết

\(P=\frac{x}{2y+z}+\frac{y}{2z+x}+\frac{z}{2x+y}\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{x^2}{2xy+zx}+\frac{y^2}{2yz+xy}+\frac{z^2}{2z+yz}\ge\frac{\left(x+y+z\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
roronoa zoro
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 12 2019 lúc 20:47

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4

Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
alibaba nguyễn
20 tháng 12 2017 lúc 13:54

Trước tiên chứng minh:

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)

Áp dụng bài toán được

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)

\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)

Dương Chí Thắng
Xem chi tiết
tth_new
8 tháng 5 2019 lúc 8:57

Anh xét hiệu P - 3/2 rồi làm như cách của em: Câu hỏi của Namek kian - Toán lớp 9 ạ ! Từ đó suy ra P >= 3/2. Hoặc có thể làm thẳng luôn như 4 bạn kia.

Con Chim 7 Màu
8 tháng 5 2019 lúc 9:38

\(P=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)-3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge\frac{9}{2\left(x+y+z\right)}\)

\(\Leftrightarrow P\ge\left(x+y+z\right).\frac{9}{2\left(x+y+z\right)}-3=\frac{3}{2}\left(đpcm\right)\)

Dấu '=' xảy ra khi \(x=y=z\)

:))

Dương Chí Thắng
8 tháng 5 2019 lúc 11:24

tth giai thich cho anh tai sao cai cuoi lai lon hon hoac bang 0 di

Phạm Tuấn Kiệt
Xem chi tiết
Lyzimi
2 tháng 3 2017 lúc 21:55

đây là cách lớp 9 nên cố hiểu nhá , ngoài ra có thể tham khảo ở sách nâng cao và phát triển toán 8 trang 43

áp dụng BĐT cosi cho 3 số dương ta có 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

với a=y+z, b=z+x, c=x+y ta đc 

\(2\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge9\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge4,5\)

\(\Rightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}\ge4,5\)

\(\Rightarrow\frac{x}{y+x}+1+\frac{y}{x+z}+1+\frac{z}{x+y}+1\ge4,5\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge1,5\)

vậy minA=1,5 khi y+z=x+z=x+y khi x=y=z

huỳnh minh quí
2 tháng 3 2017 lúc 23:29

\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)

\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\)( 1 ) 

Theo hệ quả của bất đẳng thức Cauchy ta có 

\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow\frac{x^2+y^2+z^2}{xy+yz+xz}\ge1\)

\(\Rightarrow\frac{x^2+y^2+z^2}{2\left(xy+yz+xz\right)}\ge\frac{1}{2}\)

Từ ( 1 )

\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{1}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\)

Vậy GTNN của  \(P=\frac{1}{2}\)

Dấu " = " xảy ra khi \(x=y=z\)