Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngân
Xem chi tiết
Nguyễn Hà Chi
31 tháng 12 2020 lúc 20:01

A =(a+b-2c) -(-a+b+c) -(2a-b-c)

   = a+b-2c+a-b-c-2a+b+c

   = b-2c

B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)

  = -2a+b-c+b-2c-3a+5a+3c-b

  = b-c

C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)

  = a-b-2c-2b-3c+a+2a-3b

  = -6b-5c

D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)

   = 5a-3b+c+2a-3b+5-b+c-a

   = 6a-7b+2c

Khách vãng lai đã xóa
Nguyễn Huy Tú
1 tháng 1 2021 lúc 15:36

\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)

\(=a+b-2c+a-b-c-2a+b+c=b-2c\)

\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)

\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)

\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)

\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)

\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)

\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)

Khách vãng lai đã xóa
Lê Thị Cẩm Ly
Xem chi tiết
Mai Gia Linh
28 tháng 11 2021 lúc 22:17
A/4=b/6;b/5=c/8=a/20=b/30=c/48 suy ra 5a-3b-3c/5.20-3.30-3.48=-536/-134=4 a/20=4 a=80b/30=4 b=120 c/48=4 c=192
Khách vãng lai đã xóa
lê thị cẩm ly
Xem chi tiết
Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:17

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:17

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

lê thanh tùng
Xem chi tiết
Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

minpham
Xem chi tiết
Nguyễn Thị Huyền Trang
14 tháng 7 2017 lúc 19:31

a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)

Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-64c^2\) (2)

Thay (1) vào (2) ta được

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)

\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)

=> đpcm

b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)

\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)

\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)

\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)

Vậy M=18153

MOHAMET SALAS
Xem chi tiết
Xem chi tiết

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)