Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nhã Trúc
Xem chi tiết
Thương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 21:57

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: Xét ΔIBF và ΔIAB có

góc IBF=góc IAB

góc BIF chung

=>ΔIBF đồng dạng với ΔIAB

=>IB/IA=IF/IB

=>IB^2=IA*IF

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2018 lúc 12:31

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1

 

Đức Trí
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 22:26

a: góc OBA+góc OCA=180 độ

=>ABOC nội tiếp

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC

b: DE//CF

=>sđ cung CD+sđ cung EF
góc AIB=1/2(sđ cung BD+sđ cung EF)

ABOC nội tiếp

=>góc AOB=góc ACB=1/2*sđ cung BC

=1/2(sđ cung EF+sđ cung EB)

=>góc AIB=góc AOB

=>AOIB nội tiếp

=>góc OIA=90 độ

ΔODE cân tại O

mà OI là đường cao

nên I là trung điểm của DE

Sương Sương
Xem chi tiết
Tran Le Khanh Linh
20 tháng 3 2020 lúc 20:25

Ta có: \(\widehat{OAM}=\widehat{OBM}=90^o\)(Vì AM là đường trung tuyến của (O))

\(\Rightarrow\widehat{OAM}+\widehat{OBM}=180^o\)

=> Tứ giác MAOB nội tiếp

Theo tính chất tiếp tuyến cắt nhau ta có MA=MB; OA=OB 

=> MO là đường trung trực của AB 

=> MO _|_ AB tại H

Mà \(\widehat{BAE}=90^o\)hay AE _|_ AB. Do đó AE // MO

Vì AE // MO và MA là tiếp tuyến của (O) nên \(\widehat{NMF}=\widehat{AEF}=\widehat{NAM}\)

=> Tam giác NMA đồng dạng tam giác NFM (gg)
=> \(\frac{NM}{NF}=\frac{NA}{NM}\)\(\Rightarrow NM^2=AN\cdot NF\left(1\right)\)

Ta có: \(\widehat{MFB}=\widehat{MHB}=90^o\)=> Tứ giác MFHB nội tiếp

\(\Rightarrow\widehat{FHN}=\widehat{FBM}\)mà \(\widehat{FBM}=\widehat{NAH}\)

\(\Rightarrow\widehat{NAH}=\widehat{FHN}\)

\(\Rightarrow\Delta NAH\)đồng dạng \(\Delta NHF\left(g.g\right)\)

\(\Rightarrow\frac{NA}{NH}=\frac{NH}{NF}\Rightarrow NH^2=NA\cdot NF\left(2\right)\)

(1)(2) => NM2=NH2 => MN=NH (đpcm)

Khách vãng lai đã xóa
Nguyễn Huệ Lam
Xem chi tiết
Phương Linh
Xem chi tiết
Phương Linh
Xem chi tiết
Ngọc Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2023 lúc 9:29

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng