thu gon bieu thuc sau:
\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{3-\sqrt{5}}\)
rut gon bieu thuc a) \(\sqrt{15+2\sqrt{5}-\sqrt[]{21-4\sqrt{5}}}\)
b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)
\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)
\(=\sqrt{16}\)
\(=4\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)
\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)
\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)
\(=\sqrt[4]{5-\sqrt{5}+1}\)
\(=\sqrt[4]{6-\sqrt{5}}\)
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
Rut gon bieu thuc
Điều kiện : x>=0
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
Rut gon bieu thuc:
a) (2-\(\sqrt{3}\))\(\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
b) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
c) \(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}-\sqrt{3-2\sqrt{2}}\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) rut gon bieu thuc gium em a thanks
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\)\(\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rut gon bieu thuc
tum x de bieu thuc = \(\frac{-1}{7}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)
\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)
\(\Rightarrow34\sqrt{x}=17\)
\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)
Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)
Rut gon bieu thuc
1)\(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}\)
2)\(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}\)
1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)
2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)
rut gon bieu thuc \(y=3\sqrt{5}-2\sqrt{5}+4\sqrt{5}\)
Rut gon bieu thuc
A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\)\(\frac{3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)+3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3x+11\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)\(=\frac{-3x+3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-3\sqrt{x}\left(\sqrt{x}-1\right)+8\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(8-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{8-3\sqrt{x}}{\sqrt{x}-3}\)
cho bieu thuc A=\(\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a.rut gon bieu thuc A
b. tim cac gia tri nguyen x de A nguyen
a: \(A=\left(\dfrac{6x+4}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\dfrac{6x+4-3x+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\cdot\left(1-\sqrt{3x}\right)^2\)
\(=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b: Để A là số nguyên thì \(3x-2\sqrt{3x}+1⋮\sqrt{3x}-2\)
=>\(\sqrt{3x}-2\in\left\{1;-1;3;-3\right\}\)
=>\(3x\in\left\{9;1;25\right\}\)
hay x=3