Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai huong
Xem chi tiết
shitbo
17 tháng 3 2020 lúc 16:27

\(\text{Ta có:}A+2=x^2+3x+\frac{1}{4}+2=x^2+3x+\frac{9}{4}=x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2=\left(x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A+2\ge0\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Khách vãng lai đã xóa
Trần Anh Tuấn
Xem chi tiết
Nguyễn Tấn Phát
Xem chi tiết
Vũ Tiến Manh
14 tháng 10 2019 lúc 16:57

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Cristiano Ronaldo
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Nguyễn Thị Việt Phương
Xem chi tiết
Mai Phú Sơn
Xem chi tiết
ĐẶNG QUỐC SƠN
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Pham Van Hung
10 tháng 12 2018 lúc 21:42

\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)\(ĐK:x\ne2;x\ne0\))

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)

b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy GTNN của E là 2 khi x = 1

Sawada Tsunayoshi
Xem chi tiết
Phùng Minh Quân
20 tháng 12 2018 lúc 21:32

ĐKXĐ : \(x\ne0\)

\(A=x^2-3x+\frac{4}{x}+2016=\left(x^2-4x+4\right)+\left(x+\frac{4}{x}\right)+2012\)

\(A=\left(x-2\right)^2+\left(x+\frac{4}{x}\right)+2012\ge0+2\sqrt{x.\frac{4}{x}}+2012=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\x=\frac{4}{x}\end{cases}\Leftrightarrow x=2}\)

...