Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
o0o I am a studious pers...
Xem chi tiết
Nguyễn Thảo Nguyên
8 tháng 10 2016 lúc 20:12

Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)

\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)

\(=4\left(a-1\right)+\frac{4}{a-1}+8\)

Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được

\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)

\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)

\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\)             (1)

Chững minh tương tự, ta được

\(\frac{5b^2}{b-1}\ge20\)                     (2)

\(\frac{3c^2}{c-1}\ge12\)                    (3)

Cộng (1)(2)(3) ta được

\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)

Song Lam Diệp
Xem chi tiết
ngonhuminh
19 tháng 5 2018 lúc 20:35

qua vo van

 Mashiro Shiina
19 tháng 5 2018 lúc 22:37

Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1

\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)

\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)

\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)

\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)

Dấu "=" khi \(a=b=c=2\)

Isolde Moria
19 tháng 5 2018 lúc 22:11

Nhận xét :

Nhìn vào bất đẳng thức dễ thấy ở phần tử các aanrr đều ở bậc 2 còn mẫu thì lại bậc 1 nên cần điều kiện rõ ràng hơn cho a,b và c

Tử số của các phân tử luôn dương , với điều kiện a,b,c > 0 thì mẫu rõ ràng có thể nhận giá trị âm khiên cả biểu thức bé hơn không ( mâu thuẫn đề ra ). Ví dụ khi a=b=c=\(\dfrac{1}{2}\)

=> VT \(=\dfrac{1}{1-\dfrac{1}{2}}\left(4a^2+5b^2+6c^2\right)=-2\left(4a^2+5b^2+6c^2\right)< 0\)(1)

Mà VT \(\ge48\)(2)

Thấy (1) và (2) mâu thuẫn

=> Đề sai hoặc thiểu điều kiện cho a,b và c

Trần Anh Thơ
Xem chi tiết
Trần Quốc Khanh
3 tháng 4 2020 lúc 20:22

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Nhóc Bin
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Nguyễn Đào Anh Khoa
Xem chi tiết