Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kaneki_ken
Xem chi tiết
Phạm Cao Sơn
Xem chi tiết
Agatsuma Zenitsu
25 tháng 1 2020 lúc 9:55

Theo đề: \(\sqrt[3]{x^3+5x^2}-1=\sqrt{\frac{5x^2-2}{6}}\)

\(\Rightarrow\sqrt[3]{x^3+5x^2}=1+\sqrt{\frac{5x^2-2}{6}}\)

\(Đkxđ:x^2\ge\frac{2}{5}\)

Đặt: \(\hept{\begin{cases}\sqrt[3]{x^3+5x^2}=u\\\sqrt{\frac{5x^2-2}{6}}=v\ge0\end{cases}}\)

Ta được: \(\hept{\begin{cases}x^3+5x^2=u^3\\5x^2-2=6v^2\Rightarrow x^3+2=\left(v-1\right)^3+2\Leftrightarrow x=v-1\\u=1+v\end{cases}}\)

Từ trên ta giải được nghiệm: \(x=-6+2\sqrt{7}\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
17 tháng 8 2020 lúc 11:59

mình nghĩ sửa đề bài là  \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\) 

Khách vãng lai đã xóa
lily
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Nguyễn Huy Hải
Xem chi tiết
Nguyễn Trang
17 tháng 10 2015 lúc 23:30

\(ĐKXĐ:x\le3\)

\(\Leftrightarrow\frac{5x+2\sqrt{3-x}-x}{4}>\frac{6-4+3\sqrt{3-x}}{6}\Leftrightarrow\frac{6x+3\sqrt{3-x}}{6}-\frac{2+3\sqrt{3-x}}{6}>0\Leftrightarrow3x-1>0\Leftrightarrow x>\frac{1}{3}\)

Vậy \(\frac{1}{3}

Tran Dung
Xem chi tiết
Mai Thị Thúy
Xem chi tiết