Cho ba số chính phương A, B, C. Chứng tỏ rằng :
( A - B )( B - C )( C - A ) chia hết cho 12
Cho a,b,c là 3 số chính phương . Chứng tỏ (a - b)(b - c)(c - a) chia hết cho 12.
a;b;c là các số chính phương nên viết được dưới dạng: \(a=x^2;b=y^2;c=z^2\mid x;y;z\in Z\)
Do đó, \(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y+z\right)\left(z-x\right)\left(z+x\right)\)
Trong 3 số x;y;z có ít nhất 2 số có cùng tính chẵn hoặc lẻ. Suy ra Tổng và Hiệu 2 số có cùng tính chẵn (hoặc lẻ) đó là số chẵn. => \(M\vdots4\)(1)Trong 3 số x;y;z nếu có 2 số nào có cùng số dư khi chia cho 3 thì hiệu của chúng sẽ chia hết cho 3 => \(M\vdots3\)(a)Trong 3 số x;y;z nếu không có bất kỳ 2 số nào có cùng số dư khi chia cho 3 thì các số dư đó khác nhau và lần lượt là: 0;1;2. Khi đó tổng 2 số có số dư =1 và số có số dư bằng 2 sẽ chia hết cho 3 =>\(M\vdots3\)(b)Từ (a) và (b) => \(M\vdots3\forall x;y;z\)(2)Từ (1) và (2) =>\(M\vdots12\forall a;b;c\)(ĐPCM)cho a,b,c thỏa mãn 2a+b,2b+c,2c+a là số chính phương.biết một trong ba số chính phương ấy chia hết cho 3 chứng minh rằng (a-b)^3+(b-c)^3+(c-a)^3 chia hết cho 81
Cho a,b,c là các số nguyên sao xcho 2a+b, 2b+c, 2c+a là các sos chính phương, biết rằng trong 3 số chính phương có 1 số chia hết cho 3. Chứng minh rằng: (a-b)(b-c)(c-a) chia hết cho 27
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Cho A = 2 + 2^2 + 2^3 +...+ 2^10. Chứng tỏ rằng:
a, A chia hết cho 3
b, A chia hết cho 31
c, Tìm x để 2A + 4 = 2^x-3
d, Chứng tỏ rằng A + 2 không phải là số chính phương
a,
A = 2 + 22 + 23 +...+210
A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )
A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)
A = 2 .3 + 23 .3 + ...+29.3
A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3
Vậy A \(⋮\) 3
b, A = 2 + 22 + 23 +...+210
A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
A = 2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)
A = 2 . 31 + 26 .31
A = 31(2+26 ) \(⋮\) 31
vậy A \(⋮\) 31
d , A = 2 + 22 + 23 +...+210
Cho a,b,c là 3 số chính phương.
Chứng minh ràng : P = (a-b)(b-c)(c-a) chia hết cho 12
\(a=x^2;b=y^2;c=z^2\)
\(P=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x^2-y^2\right)\left(y^2-z^2\right)\left(z^2-x^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y-z\right)\left(z-x\right)\left(z+x\right)\)
..............................
a=x2;b=y2;c=z2 P=(a−b)(b−c)(c−a)=(x2−y2)(y2−z2)(z2−x2) =(x−y)(x+y)(y−z)(y−z)(z−x)(z+x)
1) Chứng minh rằng tích của 1 số chính phương và số tự nhiên đứng liền kề trước nó chia hết cho 12.
2) chứng minh rằng nếu a2 + b2 chia hết cho 3 thì a và b đồng thời chia hết cho 3.
3) chứng minh nếu a3 +b3 +c3 chia hết cho 9 thì ít nhất 1 trong 3 số a,b,c chia hết cho 3
Cho A = 3 + 3^2 + 3^3 + ... + 3^120. Chứng tỏ:
a, A chia hết cho 13; 40.
b, A không chia hết cho 9.
c, 2A + 3 không phải là số chính phương
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương