Trả lời
Số chính phương chia 3 dư 0 hoặc 1
Số chính phương chia 4 dư 0 hoặc 1
Đặt A=(a-b)(b-c)(c-a)
Vì 1 số chính phuong chia 4 và 3 dư 0 hoặc 1
*)Vì a;b;c chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số cg số dư khi chia 3
=> Hiệu của chúg chia hết cho 3
=> a-b; b-c hoặc c-a chia hết cho 3
=> A chia hết cho 3 (1)
*) Vì a;b;c chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số cg số dư khi chia cho 4
=> Hiệu của chúg chia hết cho 4
=> a-b; b-a; c-a chia hết cho 4
=> A chia hết cho 4 (2)
Từ (1)(2)=> A chia hết chi 12 vì (3;4)=1
Vậy a;b;c là 3 số chính phương thì (a-b)(b-c)(c-a) chia hết cho 3 (đpcm)
Ta có : C > A > B
*Cm ( A - B ) ( B- C ) ( C - A ) chia hết cho 3
Vì một số chính phương chia cho 3 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 3 (*).
Tích ( A - B ) ( B- C ) ( C - A ) mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( *) thì có một hiệu chia hết cho 3 \(\Rightarrow\) ( A - B ) ( B- C ) ( C - A ) \(⋮3\left(1\right)\)
*Cm ( A - B ) ( B- C ) ( C - A ) chia hết cho 4
Vì một số chính phương chia cho 4 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 4(2).
Tích ( A - B ) ( B- C ) ( C - A ) mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( 2) thì có một hiệu chia hết cho 4 \(\Rightarrow\) ( A - B ) ( B- C ) ( C - A ) \(⋮4\left(3\right)\)
Từ (1) và (3) suy ra : Tích ( A - B ) ( B- C ) ( C - A ) chia hết cho 4 và 3 mà (4;3) =1 => ( A - B ) ( B- C ) ( C - A ) chia hết cho 3.4 <=> ( A - B ) ( B- C ) ( C - A ) chia hết cho 12 .
Vậy bài toán được chứng tỏ