Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Đăng

Cho ba số chính phương A, B, C. Chứng tỏ rằng :

( A - B )( B - C )( C - A ) chia hết cho 12

Wall HaiAnh
15 tháng 5 2018 lúc 12:57

Trả lời

Số chính phương chia 3 dư 0 hoặc 1

Số chính phương chia 4 dư 0 hoặc 1

Đặt A=(a-b)(b-c)(c-a)

Vì 1 số chính phuong chia 4 và 3 dư 0 hoặc 1

*)Vì a;b;c chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số cg số dư khi chia 3 

=> Hiệu của chúg chia hết cho 3

=> a-b; b-c hoặc c-a chia hết cho 3

=> A chia hết cho 3 (1)

*) Vì a;b;c chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số cg số dư khi chia cho 4

=> Hiệu của chúg chia hết cho 4

=> a-b; b-a; c-a chia hết cho 4

=>  A chia hết cho 4 (2)

Từ (1)(2)=> A chia hết chi 12 vì (3;4)=1

Vậy a;b;c là 3 số chính phương thì (a-b)(b-c)(c-a) chia hết cho 3 (đpcm)

Jaki Nastumi
15 tháng 5 2018 lúc 14:27

Ta có : C > A > B

*Cm  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 3

Vì một số chính phương chia cho 3 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 3 (*).

Tích  ( A - B ) ( B- C ) ( C  - A )  mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( *) thì có một hiệu chia hết cho 3 \(\Rightarrow\)  ( A - B ) ( B- C ) ( C  - A ) \(⋮3\left(1\right)\)

*Cm  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 4

Vì một số chính phương chia cho 4 chỉ có thể dư 0 hoặc 1 mà có ba số chính phương nên sẽ có 2 số cùng dư khi chia cho 4(2).

Tích  ( A - B ) ( B- C ) ( C  - A )  mỗi hiệu trên là thương của hai số mỗi số trừ cho nhau một lần nên theo ( 2) thì có một hiệu chia hết cho 4 \(\Rightarrow\)  ( A - B ) ( B- C ) ( C  - A ) \(⋮4\left(3\right)\)

Từ (1) và (3) suy ra : Tích ( A - B ) ( B- C ) ( C  - A ) chia hết cho 4 và 3 mà (4;3) =1    =>   ( A - B ) ( B- C ) ( C  - A ) chia hết cho 3.4 <=>  ( A - B ) ( B- C ) ( C  - A ) chia hết cho 12 .

            Vậy bài toán được chứng tỏ


Các câu hỏi tương tự
Phan Thanh Tịnh
Xem chi tiết
huyen
Xem chi tiết
4e4eturyf
Xem chi tiết
Đỗ Nhật Linh
Xem chi tiết
Khánh Ngọc Lâm
Xem chi tiết
Trần Minh Thư
Xem chi tiết
Khánh Ngọc
Xem chi tiết
nguyen van anh
Xem chi tiết
Nguyễn Thị Nguyệt Minh
Xem chi tiết