Cho tam giác ABC có BC=10cm. Trên AB lấy M, trên AC lấy N sao cho AM=MB và AN=NC. Tính độ dài MN
Cho tam giác ABC, có AB = 8cm, AC = 10cm, BC = 12cm. Trên cạnh AB lấy điểm M và trên cạnh AC lấy điểm N sao cho AM = 6cm, AN = 7.5cm.
a)Chứng minh MN // BC
b)Tính độ dài đoạn thẳng MN
a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)
=> MN // BC (Ta lét đảo)
b, Vì MN // BC
Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)
Bài 1: tam giác ABC, BM = 1/4BC, CB = 1/3AC. Nối MN, AM. Tìm tỉ số diện tích 2 tam giác ABM và MNC
Bài 2: cho tam giác ABC có DT là 100 xăng ti mét vuông. trên AB lấy điểm M sao cho AM = MB, trên BC lấy điểm N sao cho BN = NC và trên AC lấy điểm P sao cho AP = PC. nối M với N, N với P và P với M. tính DT tam giác MNP
bài 3: cho tam giác ABC, biết độ dày đáy BC là 27m, chiều cao AH là 20cm. trên AB lấy điểm M sao cho MA = MB. trên AC lấy điểm N sao cho NC = (1/3) AC. trên BC lấy điểm P sao cho BP = PC. Tính DT tam giác MNP
bài 4: cho tam giác ABC, M là điểm chính giữa BC, nối AM, trên AM lấy điểm N sao cho AN = 2 NM. DT tam giác ABN = 25 xăng ti mét vuông. Tính DT tam giác ABC
bạn nào có thể viết cách giải cho mình thì giúp mình nhé :)
bạn có chơi bang bang sever hư cấu ko vậy
Bài 1: tam giác ABC, BM = 1/4BC, CB = 1/3AC. Nối MN, AM. Tìm tỉ số diện tích 2 tam giác ABM và MNC
Bài 2: cho tam giác ABC có DT là 100 xăng ti mét vuông. trên AB lấy điểm M sao cho AM = MB, trên BC lấy điểm N sao cho BN = NC và trên AC lấy điểm P sao cho AP = PC. nối M với N, N với P và P với M. tính DT tam giác MNP
bài 3: cho tam giác ABC, biết độ dày đáy BC là 27m, chiều cao AH là 20cm. trên AB lấy điểm M sao cho MA = MB. trên AC lấy điểm N sao cho NC = (1/3) AC. trên BC lấy điểm P sao cho BP = PC. Tính DT tam giác MNP
bài 4: cho tam giác ABC, M là điểm chính giữa BC, nối AM, trên AM lấy điểm N sao cho AN = 2 NM. DT tam giác ABN = 25 xăng ti mét vuông. Tính DT tam giác ABC
Thế này là quá nhiều bạn ạ
Cho tam giác ABC có AB = 6cm. Trên BC lấy M sao cho CM = 3 x MB. Trên AC lấy N sao cho AN = NC x 2. MN cắt AB kéo dài tại P.
a) Tính AP =?
b) So sánh MP và MN.
Cho tam giác ABC có AB = 6cm. Trên BC lấy M sao cho CM = 3 x MB. Trên AC lấy N sao cho AN = NC x 2. MN cắt AB kéo dài tại P.
a) Tính AP =?
b) So sánh MP và MN.
cho tam giác ABC , trên AB lấy điểm M sao cho AM = MB .trên AC lấy điểm N sao cho AN = 2 NC . Đường thẳng MN cắt BC kéo dài tại D. chứng tỏ rằng BC =CD
cho tam giác abc vuông tại a có các cạnh ab=6cm ac=8cm bc=10cm
a) tính diện tích tam giác abc
b) tính độ dài đường cao ah hạ từ đỉnh a xuống đáy bc
c) trên cạnh ab lấy điểm m sao cho ma=2mb. trên cạnh bc lấy điểm n sao cho nb=nc. kéo dài mn và ac cắt nhau tại p. tính độ dài đoạn cp
Cho tam giác ABC. Trên AB lấy điểm M sao cho AM bằng MB. Trên AC lấy điểm N sao cho AN = NC. Biết diện tích tam giác AMN bằng 3 cm2.
a/ Tính diện tích tam giác ABC.
b/ Biết BC bằng 6cm. Tính MN
a,có:S AMN =1/2 S ABC
=>S ABC = 2.5 AMN = 2.3=6 cm2
b,có 2.MN=BC
=>MN=BC/2 = 6/2 = 3 cm
Cho tam giác ABC, lấy M trên AB, N trên AC sao cho AM = MB và NC = 2 x NA.
a) Tính \(\dfrac{Samn}{Sbmnc}\)
b) MN cắt BC kéo dài tại D. Tính \(\dfrac{BC}{CD}\)
a: \(S_{AMN}=\dfrac{1}{2}\cdot S_{ABN}\)(Do AM/AB=1/2)
Vì NA/NC=1/2
nên NA/AC=1/3
=>\(S_{ABN}=\dfrac{1}{3}\cdot S_{ABC}\)
=>\(S_{AMN}=\dfrac{1}{6}\cdot S_{ABC}\)
=>\(\dfrac{S_{AMN}}{S_{BMNC}}=\dfrac{1}{5}\)
Cho tam giác ABC có AB = 9cm. Trên AC lấy điểm M sao cho MC bằng 1/2 AM. Trên BC lấy điểm N sao cho NC gấp đôi BN. Kéo dài AB và MN cắt nhau tại P. Tính độ dài BP.
Kẻ ND//AB (D thuộc AB).
Có: \(MC=\dfrac{1}{2}AM;MC+AM=AC\)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{2}{3};\dfrac{MC}{AC}=\dfrac{1}{3}\).
Có: \(NC=2BN;NC+BN=BC\)
\(\Rightarrow\dfrac{NC}{BC}=\dfrac{2}{3};\dfrac{BN}{BC}=\dfrac{1}{3}\)
△ABC có: ND//AB.
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{DC}{AB}=\dfrac{2}{3}\) (định lí Ta-let)
\(\Rightarrow ND=\dfrac{2}{3}AB=\dfrac{2}{3}.6=4\left(cm\right)\).
\(\dfrac{AD}{AC}=\dfrac{BN}{BC}=\dfrac{1}{3}=\dfrac{MC}{AC}\Rightarrow AD=MC=\dfrac{1}{3}AC\)
Mà \(AD+DM+MC=AC\Rightarrow AD=DM=MC=\dfrac{1}{3}AC\); \(AM=DC=\dfrac{2}{3}AC\).
\(\Rightarrow\dfrac{MD}{AM}=\dfrac{1}{2}\)
△APM có: DN//AP.
\(\Rightarrow\dfrac{ND}{AP}=\dfrac{MD}{AM}=\dfrac{1}{2}\) (hệ quả định lí Ta-let)
\(\Rightarrow AP=2ND=2.4=8\left(cm\right)\)