Bài 3. Tìm các cặp số nguyên dương a, b thỏa mãn
UCLN (a, b) = 15, BCNN (a, b)= 2835
a. Tìm tất cả các cặp số nguyên dương a,b biết rằng 7a=11b và UCLN (a,b)=45.
b. CMR với các số nguyên khác 0,ta luôn có:
BCNN (a,b,c)=[UCLN(a,b,c) x BCNN(a,b) x BCNN(b,c) x BCNN(c,a)] / abc.
a)7a=11b
7=11b:a
7:11=b:a
Theo yêu cầu ban đầu thì a=11; b=7
Còn theo yêu cầu sau cùng là ƯCLN(a;b)=45 thì ta chỉ cần nhân cho 45 nữa là xong ngay: a=11.45=495; b=7.45=315
VẬY: a=495; b=315
Còn bài thứ 2 thì dễ ẹt, cứ tìm 1 số a bất kì, rồi tìm số b bằng cách lấy \(a^2\), rồi tìm số c bằng cách lấy \(a^3\)
VD: a=2 thì b=\(a^2\)=4 và c=\(a^3\)=8
a.b=8 chia hết cho c, b.c=32 chia hết cho a, a.c=16 chia hết cho b
trần ngọc ánh đi ăn cóp bài,làm j có bài 2
Bài 1: Tìm các cặp số nguyên dương (a;b)(a;b) thỏa mãn a+b2⋮a2b−1
mk mới lớp 8 nên ko biết làm bài lớp 9
Tìm 2 số nguyên dương a,b biết:
BCNN(a,b)=15 và BCNN(a,b)=21 UWCLN(a,b)
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y
=> x + 5 > 0
=> \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)
<=> \(x+5\ge2x^2+x+1\)
<=> \(x^2\le2\)
Vì x nguyên => x = 0 ; x = 1; x = -1
Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)
Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên
Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)
Vậy Phương trình có 4 nghiệm:...
tìm các cặp số nguyên dương (a,b) thỏa mãn:\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
a(a+b)=3=1.3( vì a b nguyên dương không lấy giá trị âm)
th1 a=1 => a+b=3 => b=2
TH2 a=3 => a+b=1 => b= -2 loại
\(\frac{a}{3}=\frac{1}{a+b}\)
a(a + b) = 3 = 3 . 1 = (-3) . (-1)
TH1: a= 3
3 + b = 1 => b= -2
TH2: a = 1
1 + b = 3 => b = 2
TH3: a = -1
-1 + b = -3 => b = -2
TH4: a = -3
-3 + b = -1 => b = 2
vậy (a ; b) = (3 ; -2) ; (1 ; 2) ; (-1 ; -2) ; (-3 ; 2)
Tìm các cặp số nguyên dương a,b,c thỏa mãn
4a+19=3^b; 2a+5=3^c
ta thấy ngay: 4a+19>2a+5 nên: 3^b>3^c hay: 3^b phải chia hết cho 3^c nên:
4a+19 chia hết cho 2a+5
=> 9 chia hết cho 2a+5 => a=2 (vì a nguyên dương)
=> b=3;c=2
Tìm số cặp a,b nguyên dương thỏa mãn (1+1/a)*(1+1/b)=3/2
B1: tìm 2 số nguyên dương a,b biết UCLN = 6; BCNN=36
B2: tìm 2 số nguyên dương a,b biết UCLN = 3, BCNN = 60
chho trước 3 số nguyên dương a,b,k 2 số nguyên dương x,y là đặc biệt nếu thỏa mãn a<= x^2,a<=b, a<=y^3,a<=b và giá trị tuyệt đói x^2-y^3 nhỏ hơn hoặc bằng k. Tìm số lượng các cặp đặc biệt
(làm ơn giúp đỡ mình cần nó trước ngày 29/1) :((
#include <bits/stdc++.h>
using namespace std;
long long a,b,k,x,y,dem=0;
int main()
{
cin>>a>>b>>k;
for (x=1; x<=k; x++)
{
for (y=1; y<=k; y++)
{
if (a<=x*x && a<=b && a<=y*y*y && a<=b) dem++;
}
}
cout<<dem;
return 0;
}