BÀi 3 : tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số ấy
Bài nèy còn dễ hơn : Tìm 1 số biết rằng 3 lần bình phương của nó đúng bằng 2 lần lập phương của nó .
Tìm một số khác 0 biết rằng bình phương của nó bằng 5 lần lập phương của số ấy
A. 5
B. 1 5
C. 1 25
D. - 1 5
Gọi số cần tìm là x (x ≠ 0). Theo đề bài ta có
x 2 = 5 x 3 ⇔ 5 x 3 – x 2 = 0 ⇔ x 2 . 5 x – x 2 = 0 ⇔ x 2 ( 5 x – 1 ) = 0
ó x 2 = 0 5 x - 1 = 0 ó x = 0 l 5 x = 1 => x = 1 5 ™
Vậy số cần tìm là 1 5
Đáp án cần chọn là: B
Tìm một số có hai chữ số biết rằng số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của số tự nhiên ấy
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Tìm một số tự nhiên có hai chữ số biết rằng số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của số tự nhiên ấy
Tìm một số tự nhiên có hai chư số biết số đó bằng tổng bình phương các trữ số của nó trừ đi 11 và số đó cũng bằng hai lần tích hai chữ số của nó cộng với 5 (GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH)
Bài này có ở sách BT mở trang cuối ra mà xem
Gọi số cần tìm là ab (đk)
Theo đề bài ta có hpt:
\(\hept{\begin{cases}10a+b=a^2+b^2-11\\10a+b=2ab+5\end{cases}}\)\(\Rightarrow2ab+5=a^2+b^2-11\)
\(\Leftrightarrow a^2+b^2-2ab=16\)
\(\Leftrightarrow\left(a-b\right)^2=16\Rightarrow\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
TH1: Nếu a = b+4\(\Rightarrow10\left(b+4\right)+b=2\left(b+4\right)b+5\)
\(\Leftrightarrow3b+35-2b^2=0\)\(\Leftrightarrow\left(7+2b\right)\left(b-5\right)=0\Rightarrow b=5\Rightarrow a=9\)
TH2: Nếu a = -4+b\(\Rightarrow10\left(-4+b\right)+b=2\left(b-4\right)b+5\)
\(\Leftrightarrow-45+19b-2b^2=0\Leftrightarrow\left(b-5\right)\left(-2b+9\right)=0\)\(\Rightarrow b=5\Rightarrow a=1\)
Vậy số cần tìm là 95 và 15
Bài 1: Chứng minh rằng:
2165+4.613 chia hết cho 40
Bài 2: Cho x3=2p+1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.
Bài 3: Tìm một số biết rằng bình phương của nó bằng 4 lần lập phương của số ấy.
CÁC BẠN GIÚP MÌNH VỚI
bài 1
2165 + 4 . 613 = 615 + 4 . 613 = 613 (62 + 4) = 613 . 40
... (tự làm)
bài 2: p = 13 (ko biết cách trình bày)
bài 3: nếu ko có điều kiện của số đó thì số đó là 0 hoặc 1 hoặc 0,25 (tức là \(\frac{1}{4}\))
GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH
a,Tìm hai số biết rằng 4 lần số thứ hai cộng với 5 lần số thứ nhất =18040, và 3 lần số thứ nhất hơn 2 lần số thứ hai là 2002.
b,Tìm một số tự nhiên có hai chữ số, biết rằng số đó gấp 4 lần tổng các chữ số của nó. Nếu viết hai chữ số của nó theo thứ tự ngược lạ thì được số mới lơn hơn số ban đầu 36 đơn vị.
a)Gọi 2 số cần tìm là a và b lần lượt là số t1 và t2 , ta có hpt :
5a+4b=18040
3a-2b=2002
giải hpt ta được a=2004;b=2005
b) Gọi số tự nhiên cần tim là ab (nhớ gạch ở trên ab đó) ;(a;b thuộc N;0<a"<9;0<b'<9)
theo đề bài ta có :
ab=4(a+b)
ba-ab=36
=>a=4;b=8 hay ab=48
nhớ các chữ ab hay ba có gạch ở trên đầu đó
GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH
a,Tìm hai số biết rằng 4 lần số thứ hai cộng với 5 lần số thứ nhất =18040, và 3 lần số thứ nhất hơn 2 lần số thứ hai là 2002.
b,Tìm một số tự nhiên có hai chữ số, biết rằng số đó gấp 4 lần tổng các chữ số của nó. Nếu viết hai chữ số của nó theo thứ tự ngược lạ thì được số mới lơn hơn số ban đầu 36 đơn vị.
Tìm một số có hai chữ số biết rằng nó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của một số tự nhiên