cho 3 số a,b,c sao cho a + b + c =0 chứng minh rằng. 2(a^5 + b^5+c^5)= 5abc(a^2+b^2+c^2)
Cho a+b+c=0. Chứng minh rằng: \(2.\left(a^5+b^5+c^5\right)=5abc.\left(a^2+b^2+c^2\right)\)
Câu trả lời hay nhất: Do a+b+c=0 =>a+b= -c
Ta có (a+b)^5=c^5
<=>a^5+5a^4b+10a^3b^2+10a^2b^3 + 5ab^4 + b^5=-c^5
<=>a^5+b^5+c^5= -5ab(a^3+2a^2b+2ab^2+b^3)
<=>a^5+b^5+c^5= -5ab( a^2(a+b)+ab(a+b)+b^2(a+b))
<=>a^5+b^5+c^5= -5ab(-c)(a^2+ab+b^2) Vì a+b= -c
<=>2(a^5+b^5+c^5)=5abc2(a^2+ab+b^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(a+b)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(-c)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2) (đpcm)
cho a+b+c=0
chứng minh rằng : \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath ...
cho a+b+c=0. chứng minh: 2(a5+b5+c5)=5abc(a2+b2+c2)
Cho \(a+b+c=0\). Chứng minh rằng: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Chứng minh rằng nếu a+b+c=0
Thì 2(a5 + b5 + c5) = 5abc ( a2 + b2 + c2)
Giải:
Ta có:
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^5=\left(-c\right)^5\)
\(\Leftrightarrow a^5+b^5+5ab\left(a^3+2a^2b+2ab^2+b^3\right)=\left(-c\right)^5\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a+b\right)\left(a^2+b^2-ab\right)+2ab\left(a+b\right)\right]\)
\(=-5ab\left(a+b\right)\left(a^2+b^2+ab\right)\)
\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left(2a^2+2b^2+2ab\right)\)
\(=5abc\left[a^2+b^2+\left(a+b\right)^2\right]=5abc\left(a^2+b^2+c^2\right)\) (Đpcm)
bài 1 .chứng minh rằng:
a,(x-y)(x2+xy+y2)+(x+y)(x2-xy+y2)=2x
b,x2-4x+5>0 với mọi x
Bài 2:cho a+b+c=0.chứng minh rằng :2(a5+b5+c5)=5abc(a2+b2+c2)
Cho các số nguyên a, b, c thỏa mãn a + b + c = 0 .
Chứng minh rằng: a5+b5+c5 chia hết cho 5abc
Ta có:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Rightarrowđpcm\)
\(\)a. Chứng minh rằng nếu các số dương a,b,c có tổng: a+b+c=1 thì:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
b. Cho các số a,b,c thỏa mãn điều kiện a+b+c=0. Chứng minh rằng:
2(a5+b5+c5)=5abc(a5+b5+c5)
a, Vì a,b,c dương nên : \(a+b+c\ge3\sqrt[3]{abc}\) (1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (2)
Nhân vế theo vế 1 và 2 ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)
Mà a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
\(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4=-c^2\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5=5abc\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left(2a^2+2ab+2b^2\right)\)
\(\Leftrightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+\left(a+b\right)^2\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a,b,c thỏa mãn a+b+c=0.CMR:2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2)