Chứng tỏ rằng
C =1/6 + 1/7 +1/8 + ...+1/19 + 1/20>1
Chứng tỏ rằng:
1/6+1/7+1/8+1/9+.......+1/18+1/19<2
Ta có :
1/6 < 1/5 , 1/7 < 1/5 , ... 1/19 < 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 + 1/5 + ...+ 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 . 14
=> 1/6 + 1/7 + ...+ 1/19 < 14/5 = 2 , 8
Cho A= 1/6+1/7+1/8+...+1/20
Chứng tỏ rằng A>1
Chứng minh rằng:
A= 1/6+1/7+1/8+...+1/20>1+1/12
B= 1/5+1/6+1/7+...+1/19<1+5/6
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)
\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)
\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)
\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)
\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)
\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)
Chứng tỏ rằng: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)
a)Cho B=1/5+1/6+...+1/19.Hãy chứng tỏ rằng B >1
b)Tính nhanh giá trị biểu thức M=3/5+3/7+3/11 trên 4/5+4/7-4/11
c)Chứng tỏ rằng S<1 biết S=3/1x4+3/4x7+3x7x10+...+3/40x43+3/43x46
chứng tỏ rằng:1/5+1/6+1/7+1/8+1/9<1
Có: 1/5 =1/5
1/6<1/5
1/7<1/5
1/8<1/5
1/9<1/5
=> 1/5+1/6+1/7+1/8+1/9<1/5+1/5+1/5+1/5+1/5=1.
Vậy 1/5+1/6+1/7+1/8+1/9<1(đpcm).
(1/5 + 1/6 + 1/7 + 1/8 + 1/9)<(1/5 x 5)
(Vì 5 số hạng biểu thức đề cho có 4 số hạng nhỏ hơn 1/5 và chỉ có 1/5 = 1/5)
⇒ (1/5 + 1/6 + 1/7 + 1/8 + 1/9) < 1
Vậy...
Tính nhanh: Hãy chứng tỏ rằng 1/6+1/7+1/8+1/9+1/10>1/2
Ta có : \(\dfrac{1}{6}>\dfrac{1}{10}\)
\(\dfrac{1}{7}>\dfrac{1}{10}\)
\(\dfrac{1}{8}>\dfrac{1}{10}\)
\(\dfrac{1}{9}>\dfrac{1}{10}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
Cộng tất cả các vế ( phải theo phải ) ( trái theo trái ta được )
\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)
Ta có:
\(\dfrac{1}{6}>\dfrac{1}{10}\)
\(\dfrac{1}{7}>\dfrac{1}{10}\)
\(\dfrac{1}{8}>\dfrac{1}{10}\)
\(\dfrac{1}{9}>\dfrac{1}{10}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
Do đó ta có:
\(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{10}\times5\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{5}{10}=\dfrac{1}{2}\)
Vậy \(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}>\dfrac{1}{2}\)
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
S=1/5+1/13+1/25+...+1/19^2+20^2 chứng tỏ rằng S<17/40