Giải HPT :
\(\hept{\begin{cases}2x^2+2y^2+3xy=7\\y^4+14xy=4x^3+6x^2+4x+1\end{cases}}\)
1.\(\hept{\begin{cases}x^3+y^3=2\\xy\left(x+y\right)=2\end{cases}}\) 2.\(\hept{\begin{cases}x^2+y^2=2\\x^4+y^4+6x^2y^2+8xy=16\end{cases}}\)
3.\(\hept{\begin{cases}x^2+y^2+xy=3\\x^5+y^5+15xy\left(x+y\right)=32\end{cases}}\) 4.\(\hept{\begin{cases}x^3+y^3=2\\27x^3+6y^2x=2+y^3+30x^2y\end{cases}}\)
5.\(\hept{\begin{cases}2x^2+2y^2+3xy=7\\x^4+14xy=4x^3+6x^2+4x+1\end{cases}}\) 6.\(\hept{\begin{cases}4x^2+y^2=5\\\frac{15x^3}{y}+\frac{y^3}{x}+12xy=40\end{cases}}\)
\(\hept{\begin{cases}x^3+y^3=2\\xy\left(x+y\right)=2\end{cases}}\)
Trừ cho nhau có nghiệm
\(\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]=0\)
\(\orbr{\begin{cases}x+y=0\left(loai\right)\\\left(x-y\right)^2=0\Rightarrow x=y\end{cases}}\)\(2x^3=2\Rightarrow x=1\) Kết luận có nghiệm x=y=1
Giải HPT \(\hept{\begin{cases}2x^2+y^2-4x+2y=1\\3x^2-2y^2-6x-4y=5\end{cases}}\)
Hệ phương trình tương đương \(\hept{\begin{cases}4x^2+2y^2-8x+4y=2\\3x^2-2y^2-6x-4y=5\end{cases}}\)
Cộng vế theo vế ta có phương trình:
\(7x^2-14x=7\Leftrightarrow7x^2-14x-7=0\)
giải hpt:
1, \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
2. \(\hept{\begin{cases}x^3-y^3=9x+9y\\x^2-y^2=3\end{cases}}\)
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)
b,
\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)
Tự xử đoạn còn lại nhé
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
Giải hpt
1\(\hept{\begin{cases}3x^2+xy-y^2=9\\4x^2-3xy+y^2=18\end{cases}}\)
2\(\hept{\begin{cases}3x^2+y^2=4x+5\\x^2+y=5\end{cases}}\)
Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi
1) \(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
2)\(\hept{\begin{cases}x^2y+2x^2+3y=15\\x^4+y^4-2x^2-4y=5\end{cases}}\)
1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3
thế 18y3 từ phương trình (1) vào ta được
8x3y3-72x2y2-108xy+27=0
<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)
thay vào (1) ta tìm được x,y
=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)
vậy hệ đã cho có nghiệm
\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-2y\end{cases}}\)
2) \(\hept{\begin{cases}x^2-3xy-4y^2=8\\x^2y+y^2x-4x-4y=8\end{cases}}\)
GIÚP MIK VS, CẦN GẤP TRONG TỐI NAY!!
2)trừ từng vế của 2 pt, ta có
\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )
đến đây thì dễ rồi
^_^
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)