tìm số tự nhien x và số nguyên y sao cho 2016x+35=y2
Tìm số tự nguyên x và số tự nguyên y sao cho 2016 mũ x+35=y mũ2
1golem ơi giúp mình đi
mình sắp thi rùi
làm ơn đấy
Bài 5: Có tìm được các số nguyên x,y,z sao cho:
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018 không? Giải thích
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y - 2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z = 2018
=> 0x + 0y + 0z = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z=2018
=> 0x + 0y + 0z=2018(vô lý)
Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.
tìm số nguyên x,y sao cho
(2016x + 1)2+y2=20222022
tm x, y
a) 2x98y chia het 2,3,5,9
b) Hiệu sau là số nguyên tố hay hợp số vì sao?
5 * 7 * 9 - 2 * 3 * 4
c) tìm số tự nhien a, biết rằng:
a chia cho 5 dư 3
a chia cho 7 dư 5
và 35 < a < 105
Bài 1:
a) Tìm các số tự nhiên n sao cho 3n+10 chia hết cho n+2
b) Tìm các số nguyên tố x,y sao cho x2+117=y2
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
1)trục căn thức ở mẩu
4/(can(3)+can(2)+1)
2)tìm nghiệm pt
x^3+3x^2-3x+1
3)tìm góc tạo bởi can(3)x+y=2016
4)a=x^5-2016x^4+2016x^3-2016x^2+2016X-2016:x=2015
5)tìm p:để p^2+2 và p^3+2 là số nguyên tố
6)tìm số nhỏ nhất có 12 nghiêm dương
7) từ 1 đến 200 có bao nhiêu số chia hết cho 2 và ko chia hết cho 3
8)số các u nguyên của a=6^2*5^3
9)cho x>0 x^2 +1/x^2=7 tính x^4+1/x^4
1)can(2)*(can(2)+1-can(3))
2)-1/(canbậc3của2-1)
3)120
4)1
5)3
6)60
7)chưa làm
8)72
9)47
Tìm các số nguyên dương x,y sao cho x^2+8y và ^y2+8x đồng thời là số chính phương.
Không mất tính tổng quát giả sử x ≥ y
⇒x²<x²+8y≤x²+8x<(x+4)²
VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2
hoặc x²+8y=(x+2)2x²+8y=(x+2)²
hoặc x²+8y=(x+3)²
Nếu x²+8y=(x+1)²
⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)
Nếu x²+8y=(x+2)² ⇒8y=4x+4 ⇒2y=x+1
⇒[(x+1)2]²+8x ⇒(x+12)²+8x là số chính phương.
⇒x²+34x+1=a² với a∈N
⇒(x+17)²−288=a²
⇒(x+17−a)(x+17+a)=288
Đến đây thì dễ rồi
Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)²
⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)
Giả sử x ≤ y
Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2
=> y2 + 8x = (y+1)²
(y+2)²
(y+3)²
Xét TH1 : y2 + 8x = (y + 1)2
=> y2 + 8x = y2 + 2y +1
=> 8x - 2y = 1
=> 4x - y = 1212 => Loại vì x, y ∈ N*
Xét TH2: y2 + 8x = (y + 2)2
=> y2 + 8x = y2 + 4x + 4
=> 8x - 4y = 4
=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:
Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)
Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)
Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y
Xét TH3 : y2 + 8x = ( y +3 )2
=> y2 + 8x = y2 + 6y + 9
=> 8x - 6y = 9
=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*
Vậy (x,y) = (1;1)
cái dới không correct
a) Tìm tất cả các cặp số tự nhiên (x,y) sao cho: 4x+5y=35
b) Tìm tất cả các cặp số tự nhiên khác 0 (x,y) sao cho: (2x+5).(x+2)=3y
c) Tìm các số nguyên tố x,y thỏa mãn: 272x=11y+29
d) Chứng minh rằng với mọi số tự nhiên n thì: (10n+72n-1) chia hết cho 81
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Cho biểu thức:
M = 1 - 2 + 3 - 4 + ... + 35 - 36.
Tìm các số nguyên x;y sao cho 5x - 2xy = M
Tìm số tự nhiên lẻ 1 - x. Tìm x sao cho số chữ số của dãy gấp 3 lần số số hạng của dãy.
Giúp mik xong mình tick luôn.