tim cac so nguyen duong x y thoa man \(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
Tim cac so x, y la cac so nguyen thoa man: \(\frac{2}{x+y\sqrt{5}}-\frac{3}{x-y\sqrt{5}}=-9-20\sqrt{5}\)
cac ban giup minh voi
c1: Tap hop cac gia tri nguyen cua x thoa man \(\left(x+\frac{5}{4}\right)\left(x-\frac{19}{7}\right)\)<0
c2: Neu x,y la cac so nguyen thoa man 2xy+4y=6 thi y co the nhan nhung gia tri nam trong tap hop nao
c3: tim 3 so x,y,z biet x+y=8,x+z=10,y+z=12
C4: Gia tri cua x thoa man (x+3)^2=25 va x^3>0 la x=
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
C3: (x+y)+(x+z)+(y+z)=8+10+12
=> 2(x+y+z)=30
=> x+y+z=15
=> x=15-12=3
y=15-10=5
z=15-8=7
cho x,y la cac so nguyen duong thoa man \(9y\left(y-x\right)=4x^2tinhA=\frac{x-y}{x+y}\)
\(4x^2=9y\left(y-x\right)\)
\(\Leftrightarrow4x^2+9xy-9y^2=0\)
\(\Leftrightarrow\left(4x^2-3xy\right)+\left(12xy-9y^2\right)=0\)
\(\Leftrightarrow\left(4x-3y\right)\left(x+3y\right)=0\)
Mà x;y>0 nên x+3y>0
=> 4x-3y=0
=>4x=3y
Thay vào mà tính
tim tat ca cac cap so nguyen x,y thoa man;\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{p}\)trong do p la so nguyen to cho truoc
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)⇔ p(x+y)=xy (1)
Vì p là số nguyên tố nên suy ra trong hai số x,y luôn có 1 số chia hết cho p.
Không mất tính tổng quát ta giả sử: x ⋮ p ⇒ x=kp (k∈N∗)
Nếu k=1, thay vào (1) ta được: p(p+y)=p ⇒ p+y=1, vô lí.
Do đó k≥2. Từ (1) suy ra: p(kp+y)=kp.y ⇔ y=\(\frac{kp}{k-1}\)
Do y∈N∗ mà (k;k−1)=1 ⇒ p ⋮ k−1 ⇒ k−1∈{1;p}
∙ k−1=1 ⇒ k=2⇒x=y=2p
∙ k−1 = p ⇒ k=p+1 ⇒ x=p(p+1),y=p+1
Vậy phương trình có ba nghiệm là: (2p;2p),(p+1;p2+p),(p2+p;p+1).
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
Tim cac so nguyen x,y thoa man:
\(\left|x-7\right|+\left|3-x\right|=\frac{12}{\left|y+1\right|+3}\)
Cũng dễ
Bạn chỉ cần xét từng trường hợp thôi
1) Tim x biet :
a) \(\frac{2}{3}x-70\frac{10}{11}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\right)=-5\)
2) a) Tim cac cap so thuc (x,y) sao cho x,y thoa man dong thoi 2 dieu kien sau:
x=\(x^2+y^2\)va \(y=2xy\)
Tim cac so nguyen duong x;y;z thoa man x!+y!=10.z+9