Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nanh
Xem chi tiết
Hoàng Hảo Trần
Xem chi tiết
YangSu
13 tháng 3 2023 lúc 16:09

\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)

Bình phương 2 vế pt , ta có :

\(x^2-5x-1=x-1\)

\(\Rightarrow x^2-5x-x=-1+1\)

\(\Rightarrow x^2-6x=0\)

\(\Rightarrow x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)

Vậy pt có tập nghiệm \(S=\left\{6\right\}\)

Thanh Hoàng Thanh
13 tháng 3 2023 lúc 16:14

loading...  

Nguyễn Huy Tú
13 tháng 3 2023 lúc 20:10

\(x^2-2x+2m^2-3m+1=0\Leftrightarrow x^2-2x+1=-2m^2+3m\)

Cho f(x) = x^2 - 2x + 1 

-> I(1;0) lập BBT ( bạn tự lập nhé ) 

Để pt có nghiệm khi \(-2m^2+3m\ge0\Leftrightarrow0\le m\le\dfrac{3}{2}\)

 

 

lê duy mạnh
Xem chi tiết
kudo shinichi
Xem chi tiết

Em nên chèn bằng công thức nhé, chứ em viết thế này cô không hiểu đúng đề bài em cần được để trợ giúp em đâu

Thư Anh
Xem chi tiết
Nguyễn Ngọc Huyền Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 21:07

Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay \(x=4-\sqrt{15}\) vào pt được : 

\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)

Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)

Lightning Farron
15 tháng 8 2016 lúc 22:15

Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay vào ta có:

\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)

\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)

Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)

31a-3a+1=0 <=>a=1.Từ (1) =>b=-8

Vậy  a= 1 và b= -8

 

Nguyễn Thu Uyên
Xem chi tiết
Nhóc vậy
Xem chi tiết
Nguyễn Tũn
25 tháng 8 2018 lúc 11:24

Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.

MONG CÁC BẠN  

Đỗ Ngọc Hải
26 tháng 8 2018 lúc 10:28

Dễ thấy có 1 nghiệm là x=2
Để pt có 2 nghiệm pb thì x2+(m+1)x-m-2 có nghiệm kép khác 2
\(\Leftrightarrow\hept{\begin{cases}2^2+\left(m+1\right).2-m-2\ne0\\\Delta=\left(m+1\right)^2+4\left(m+2\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-4\\m=-3\end{cases}}}\)
Vậy m=-3

Hue Trieu
Xem chi tiết