Chứng minh rằng nếu a0b \(⋮\)31 thì (7a + b) \(⋮\)31
Cho x,y là các số nguyên. Chứng tở rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Điều ngược lại có đúng ko
Chứng minh rằng nếu;a/b=c/d thì;7a2+3ab/11a2-8b2=7c2+3cd/11c2-8d2
Chứng minh rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.
Giúp mk nhé !!! Mình cần gấp lắm !!!
Đặt A=6(x+7y)-(6x+11y)
= 6x+42y-6x-11y
= 31y
Do 31y chia hết cho 31.
6x+11y chia hết cho 31 \(\Rightarrow\) 6(x+7y) chia hết cho 31.
Do (6, 31)=1 \(\Rightarrow\) x+7y chia hết cho 31.
Vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.
Đặt \(A=6\left(x+7y\right)-\left(6x+11y\right)\)
\(=6x+42y-6x-11y\)
\(=3y\)
Do \(31y⋮31\)
\(6x+11y⋮31\Rightarrow6\left(x+7y\right)⋮31\)
Vì \(6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
Vậy nếu \(6x+11y⋮31\Rightarrow x+7y⋮31\)(Đpcm)
Bài 2 : Chứng minh rằng nếu ( a - b - c ) + ( -a + b - c ) = -(a - b + c) thì a = b+c
Chứng minh rằng nếu ab=2cd thì abcd chia hết cho 67
abcd=100ab+ cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)
abcd=100ab+cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67
=> abcd chia hết cho 67
=> (ĐPCM)
chứng minh rằng nếu a2=bc (với a khác b,c) thì a+b/a-b=c+a/c-a
mình cũng đang vướng bài đay nè
Chứng minh rằng nếu a/b<c/d(b, d>0) thì: a/b<a+c/b+d<c/d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
\(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng nếu \(a^2+b^2=2ab\)thì \(a=b\)
Ta có: a2 + b2 = 2ab
=> a2 + b2 - 2ab = 0
=> (a - b)2 = 0
=> a - b = 0
=> a = b (Đpcm)
Chứng minh rằng nếu x thuộc Z thì B=(x-2).(x+3)-(x-3).(x+2) là số chẵn
Nhân phân phối zô:
B = (x2 +x -6) - (x2 -x -6) = 2x - 12 ( 2x luôn chẵn. Trừ thêm 1 số chẵn thì sẽ luôn chẵn)