Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vinh2k52
Xem chi tiết
Anikawa Jikarin
Xem chi tiết
Minh Triều
29 tháng 6 2016 lúc 12:28

P=x3+y3+26xy=(x+y)(x2-xy+y2)+(x+y)xy

=(x+y)(x2+y2)

=26.(x2+y2)

=13.(x2+y2)(12+12)\(\ge\)13.(x+y)2=13.262=8788

Dấu "=" xảy ra khi x=y=13

Vậy GTNN của P là 8788 tại x=y=13

Anikawa
Xem chi tiết
Võ Đông Anh Tuấn
18 tháng 9 2016 lúc 10:19

\(P=x^3+y^3+26xy=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)xy\)

   \(=\left(x+y\right)\left(x^2+y^2\right)\)

   \(=26.\left(x^2+y^2\right)\)

   \(=13.\left(x^2+y^2\right)\left(1^2+1^2\right)\ge12.\left(x+y\right)^2=13.26^2=8788\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=13\)

Vâỵ \(MIN_B=8788\) khi và chỉ khi \(x=y=13\)

Chúc bạn học tốt hihi

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Nhi
Xem chi tiết
Lê Thị Phương
Xem chi tiết
Thiên An
29 tháng 7 2017 lúc 21:49

Thay y= 1-x ta được

\(c=x^2+y^2+xy=x^2+\left(1-x\right)^2+x\left(1-x\right)=x^2-x+1\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra  \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y=1-x\end{cases}}\)  \(\Leftrightarrow x=y=\frac{1}{2}\)

Nguyễn Đại Nghĩa
30 tháng 4 2018 lúc 10:06

Đặt \(x=1-y\)

\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+y\left(1-y\right)\)

\(\Leftrightarrow C=1-2y+y^2+y^2+y-y^2=y^2-y+1\)

\(\Leftrightarrow\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)+\frac{3}{4}\Leftrightarrow\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy min C là 3/4 khi y=1/2 và x =1- 1/2= 1/2 hay x=y= 1/2

Tran Huong
Xem chi tiết
LÊ ĐOÀN KHÁNH LINH
Xem chi tiết
linh phạm
Xem chi tiết
Xyz OLM
21 tháng 4 2022 lúc 23:10

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)

Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)

Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)

Vậy Min P = 6 <=> x = y = 1/2