Chứng tỏ đa thức :2^4+x^3+1 không có nghiệm
AC online Math giúp e vs ạ
Cho 3 đa thức:
P(x)=6x2-17x+15
Q(x)=12x2 +4x-3
H(x)= -15x2+13x-12
Chứng tỏ rằng trong 3 đa thức trên có 1 giá trị không âm.
Giúp mk vs.
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
Cho 2 đa thức A(x)=2x2-5+9x và B(x)=3x2+9x-1
a) Tìm đa thức M(x) sao cho A(x)+M(x)=B(x)
b) Chứng tỏ rằng đa thức M(x) không có nghiệm.
Giúp mik vs ạ, mik cảm ơn!
`a) A(x) + M(x) = B(x)`
`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`
`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`
`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`
`-> M(x) = x^2 + 4`
__________________________________
`b)` Cho `M(x) = 0`
`-> x^2 + 4 = 0`
`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)
Vậy đa thức `M(x)` không có nghiệm
a, ta có A(x) + M(x)= B(x)
=> M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
= 3x2+9x-1 -2x2 +5 -9x
= (3x2-2x2) +( 9x-9x)+(5-1)
= x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0
Chứng tỏ đa thức P(x)=x4+3x2+3 không có nghiệm
Mấy bạn ơi, giúp mk vs!!! Mai mk phải nộp bài rồi
DO x^4;3x^2 lớn hơn hoặc = 0( bn tự viết dấu) vs mọi x => x^4 + 3x^2 + 3 lớn hơn hoặc = 0 vs mọi x => P(x) = ... vô nghiệm
Bài 1:Tìm giá trị của m để đa thức
a) f(x)=mx^2+2x+8 có một nghiệm là -1
b) g(x)=x4+3m^2x^3+3mx có một nghiệm là 1
Bài 2:Cho đa thức F(x)=1+x+x^2+...+X^201;G(x)=-x-x^3-x^5-...-x^201
a) Chứng tỏ x=-1 là nghiệm của đa thức F(x)
b) Đặt H(x)=F(x)+G(x).Tính H(2)
Ai hỗ trợ e vs ạ,phần này e chưa có học đến
Chứng minh đa thức không có nghiệm:h(x)= x^2- 3x+5, giúp mk vs ạ
Ta có: x2-3x+5 = x2-2.(3/2)x+9/4 + 11/4 = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) với mọi x
=> h(x)=x2-3x+5 > 0 với mọi x
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Phân tích đa thức thành nhân tử:
a) \(x^3-19x-30\)
b) \(x^3-7x-6\)
c) \(x^8+x^4+1\)
d) \(x^4-2x^2-24\)
e) \(x^3-2x-4\)
f) \(x^3+x^2+4\)
CÁC BẠN BIẾT CÁCH PHÂN TÍCH ĐA THỨC BẬC 3 MÀ KHÔNG KHÔNG CÓ BẬC 2 HAY ĐA THỨC BẬC 4 MÀ KHÔNG CÓ ĐA THỨC BẬC 3 THÌ GIÚP MÌNH VS NHAN !!!
THANKS!
LOVE
a, x3 - 19x - 30
= x3 - 5x2 + 5x2 - 25x + 6x + 30
= (x2 + 5x + 6)(x - 5)
= (x + 3)(x + 2)(x - 5)
d, x4 - 2x2 - 24
= x4 - 6x2 + 6x2 - 24
= (x2 - 6)(x + 4)
a,cho x-2y=1. Tìm giá trị nhỏ nhất của A = \(x^2+y^2+4\)
b, tìm số dư phép chia đa thức \(x^{2008}-x^3+5\) cho đa thức x^2-1
Làm giúp mình nhanh vs ạ đang cần gấp
Mấy bạn không biết làm thì đừng cmt kiểu e mới chỉ học lp 6 thôi nhé, những ai biết làm thì làm ơn làm giúp mình nhanh vs ạ
\(a.\) Từ \(x-2y=1\) \(\Rightarrow\) \(x=1+2y\) \(\left(\text{*}\right)\)
Thay \(x=1+2y\) vào \(A\), khi đó, biểu thức \(A\) trở thành
\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)
\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\) với mọi \(y\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(\left(y+\frac{2}{5}\right)^2=0\) \(\Leftrightarrow\) \(y+\frac{2}{5}=0\) \(\Leftrightarrow\) \(y=-\frac{2}{5}\)
Thay \(y=-\frac{2}{5}\) vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)
Vậy, \(A\) đạt giá trị nhỏ nhất là \(A_{min}=\frac{21}{5}\) khi và chỉ khi \(x=\frac{1}{5}\) và \(y=-\frac{2}{5}\)
\(b.\) Gọi \(Q\left(x\right)\) là thương của phép chia và dư là \(r=ax+b\) (vì dư trong phép chia cho \(x^2-1\) có bậc cao nhất là bậc nhất), với mọi \(x\) ta có:
\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\) \(\left(\text{**}\right)\)
Với \(x=1\) thì phương trình \(\left(\text{**}\right)\) trở thành \(5=a+b\) \(\left(1\right)\)
Với \(x=-1\) thì phương trình \(\left(\text{**}\right)\) trở thành \(7=-a+b\) \(\left(2\right)\)
Giải hệ phương trình \(\left(1\right)\) và \(\left(2\right)\), ta được \(a=-1\) và \(b=6\)
Vậy, dư trong phép chia đa thức \(x^{2008}-x^3+5\) cho đa thức \(x^2-1\) là \(-x+6\)