Tìm tất cả các số tự nhiên n để n^3-n^2-7n+10 là số nguyên tố
Tìm tất cả số tự nhiên n để n3-n2-7n+10 là số nguyên tố
Đặt biểu thức n3 – n2– 7n + 10 bằng A
A= n3 – 2n2 + n2 – 2n – 5n +10
A= (n – 2)(n2 + n – 5).
Để n3-n2-7n+10 là số nguyên tố thì
* n = 3 => A = 7.
* n = 2 =>A = 0 (loại).
Vậy n = 3 là giá trị cần tìm.
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số tự nhiên n sao cho \(p=3n^3-7n^2+3n+6\) là một số nguyên tố
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1
Tìm tất cả các số tự nhiên n để :
a/ n^2 +12n là số nguyên tố
b/ 3^n +6 là số nguyên tố
Tìm tất cả các số tự nhiên n để :
a/ n^2 +12n là số nguyên tố
b/ 3^n +6 là số nguyên tố
tìm tất cả số tự nhiên n để 5^n + 10 là số nguyên tố.
Các hảo hán cíu iem với ạ :<
TH1. Đề bài là: 5n + 10 \(\in\) P
Với n = 0 ⇒ 5n + 10 = 1 + 10 = 11 (thỏa mãn)
Với n ≥ 1 ⇒ 5n + 10 = \(\overline{..5}\)+ 10 = \(\overline{..5}\) ⋮ 5 (loại)
Vậy n = 0
TH2. Đề bài là: 5n +10 \(\in\) P
5n+10 \(\in\) P ⇔ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
tìm số tự nhiên n để sao cho k= \(n^3-n^2-7n+10\) là số nguyên tố
n\(^3\) -n\(^2\) -7n +10
=n\(^3\) -2n\(^2\) +n\(^2\) -2n-5n+10
=(n-2)(n\(^2\) +n-5) (bạn nhóm lại rồi rút nhân tử chung nha)
Vì P nguyên tố nên
=> n-2=1 =>n=3 (nhận)
=>n\(^2\) +n-5=1 => n=2 (nhận) hoặc n=-3(loại)
ta có: n=3 =>P=7(nhận) (bạn thế n vào biểu thức P rồi tính ra)
n=2 => P=0(loại)
vậy n cần tìm là n=3
nếu n=1 thì k vẫn là số nguyên tố mà bạn
Tìm tất cả các số tự nhiên n để: 3^n + 9.n + 36 là số nguyên tố.
tìm tất cả số tự nhiên n để 5 mũ n + 10 là số nguyên tố
Xét 2 trường hợp:
TH1: n = 0
5ⁿ + 10 = 5⁰ + 10 = 11 là số nguyên tố
TH2: n ≠ 0
Ta có:
5ⁿ ⋮ 5
10 ⋮ 5
⇒ (5ⁿ + 10) ⋮ 5
⇒ 5ⁿ + 10 là hợp số
Vậy n = 0 thì 5ⁿ + 10 là số nguyên tố
Nếu đề bài là:
5n+10 \(\in\) P
⇔ 5n+10 = 5
⇒ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
Nếu đề bài là:
5n + 10 \(\in\) P
với n = 0 ta có 5n + 10 = 11 (thỏa mãn)
Với n ≥ 1 ta có 5n + 10 = \(\overline{..5}\) + 10 = \(\overline{...5}\) (là hợp số loại)
Vậy n = 0
Tìm tất cả các số tự nhiên n để
a) n2 + 12n là số nguyên tố
b) 3n + 6 là số nguyên tố
chứng tỏ rằng 1050+5 là hợp số