Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Tuyết
Xem chi tiết
Phùng Tuệ Minh
3 tháng 5 2019 lúc 12:20

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)

\(\Leftrightarrow1-\frac{1}{97}=\frac{96}{97}\)

Do \(\frac{96}{97}< 1\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}< 1\)

Vậy:.............................<1

Nguyễn Anh Vũ
Xem chi tiết
Grey.nnvd (07)
2 tháng 10 2023 lúc 22:10

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

Đỗ Thái Bảo
Xem chi tiết
Đỗ Thái Bảo
18 tháng 5 2020 lúc 20:08

Giúp mình đi

Khách vãng lai đã xóa
Nguyen Huu Minh Thanh
18 tháng 5 2020 lúc 21:26

Đặt 2/3 ra ngoài  trong ngoặc còn :

1-1/4+1/4-1/7+...-1/97=96/97

Lấy 2/3 nhân với 96/97 sẽ ra đáp án nhé

Khách vãng lai đã xóa
Đỗ Thái Bảo
24 tháng 11 2020 lúc 18:30
Cám ơn bạn
Khách vãng lai đã xóa
Tuệ Nhi
Xem chi tiết
chuche
2 tháng 3 2023 lúc 22:09

`3/1.4+3/4.7+3/7.10+...+3/94.97`

`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`

`=1-1/97`

`=96/97`

Thuỳ Linh Nguyễn
2 tháng 3 2023 lúc 22:09

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)

Nguyễn Mai Nhan Ngọc
Xem chi tiết
Minh Triều
5 tháng 8 2015 lúc 10:28

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

Sakuraba Laura
6 tháng 3 2018 lúc 17:46

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

nguyễn thùy chi
1 tháng 5 2019 lúc 14:23

tại sao ko đóng mở ngoặc phép tính rồi nhân 3 vậy?

Nguyen Dang Hai Dang
Xem chi tiết
Phạm Minh Châu
20 tháng 8 2023 lúc 20:21

\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)

⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)

Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.

Nguyen Dang Hai Dang
Xem chi tiết
boi đz
18 tháng 8 2023 lúc 8:24

\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)

\(A=1-\dfrac{1}{67}\) < 1

=> A<1

Võ Ngọc Phương
18 tháng 8 2023 lúc 8:22

Ta có:

\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)

\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)

\(=3.\left(1-\dfrac{1}{67}\right)\)

\(=3.\dfrac{66}{67}\)

\(=\dfrac{198}{67}\)

Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)

Vậy \(A>1\)

Võ Ngọc Phương
18 tháng 8 2023 lúc 8:27

sửa bài:

...  \(=1-\dfrac{1}{67}\)

\(=\dfrac{66}{67}\)

Vì \(\dfrac{66}{67}\) có tử nhỏ hơn mẫu nên \(\dfrac{66}{67}< 1\)

Vậy \(A< 1\)

Vin Zoi
Xem chi tiết

a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\) 

\(\dfrac{-n-a-n}{n.\left(n+a\right)}\)

\(\dfrac{-2n-a}{n.\left(n+a\right)}\)

b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)

\(\dfrac{2007}{2008}\)

c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)

\(\dfrac{96}{97}\)

Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Huy Tú
30 tháng 6 2017 lúc 14:17

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=1-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Quoc Tran Anh Le
15 tháng 12 2017 lúc 18:04

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)

\(=3\left(1-\dfrac{1}{97}\right)\)

\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)

Thương Thương
15 tháng 12 2017 lúc 18:25

\(=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\right)\)

\(=\dfrac{1}{3}.\left(3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{37}-\dfrac{3}{40}\right)\)

= \(\dfrac{1}{3}.\left(3-\dfrac{3}{40}\right)\)

= \(\dfrac{1}{3}.\dfrac{117}{40}\)

\(=\dfrac{39}{40}\)