Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
rororonoazoro
Xem chi tiết

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

Thanh Thảo Trịnh
Xem chi tiết
nguyen duc thang
15 tháng 3 2018 lúc 20:48

Ta có :

A = \(\frac{10^{2017}+1}{10^{2018}+1}\)< 1 => A < \(\frac{10^{2017}+1+9}{10^{2018}+1+9}\)\(\frac{10^{2017}+10}{10^{2018}+10}\)\(\frac{10^{2016}+1}{10^{2017}+1}\)= B

Vậy A < B

Bùi Hồng Anh
15 tháng 3 2018 lúc 20:51

A<B. lời giải thích khó viết lắm nên bạn tự tìm cách làm nhé

Trần Tích Thường
Xem chi tiết
tth_new
17 tháng 2 2019 lúc 19:40

Ta có: \(B=\frac{10^2\left(10^{2017}+1\right)}{10^2\left(10^{2016}+1\right)}=\frac{10^{2019}+1+99}{10^{2018}+1+99}\)

Do phân số \(A=\frac{10^{2019}+1}{10^{2018}+1}>1\).Áp dụng BĐT \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\).

Ta có: \(A=\frac{10^{2019}+1}{10^{2018}+1}>\frac{10^{2019}+1+99}{10^{2018}+1+99}=B\)

Vậy \(A>B\)

tth_new
17 tháng 2 2019 lúc 19:42

C/m BĐT phụ nè: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\)

\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)

\(\Leftrightarrow ab+am>ab+bm\)

\(\Leftrightarrow am>bm\Leftrightarrow a>b\) (đúng,do \(\frac{a}{b}>1\))

Nguyễn Bá Hùng
Xem chi tiết
Nguyễn Văn Hưởng
7 tháng 1 2018 lúc 17:35

Ta có :  \(A=\frac{10^{2016}+1}{10^{2017}+1}\) 

Suy ra  \(10A=\frac{10^{2017}+10}{10^{2017}+1}\) 

Suy ra  \(10A=1+\frac{9}{10^{2017}+1}\) 

Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\) 

Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\) 

Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\) 

Vì  \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) 

Nên  \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\) 

Suy ra \(10A>10B\) 

Suy ra \(A>B\)

ST
7 tháng 1 2018 lúc 17:26

\(B< \frac{10^{2017}+1+9}{10^{2018}+1+9}=\frac{10^{2017}+10}{10^{2018}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2016}+1}{10^{2017}+1}=A\)

vậy A > B

Nguyễn Đức Hiền
Xem chi tiết
Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Tường đây

Phùng Minh Quân
15 tháng 3 2018 lúc 20:18

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\) \(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2018}+1+9}=\frac{10^{2018}+10}{10^{2018}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Quách Trung Kiên
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Huỳnh Thị Mỹ Duyên
Xem chi tiết
Oo Bản tình ca ác quỷ oO
14 tháng 4 2016 lúc 9:48

ta có: 10A = \(\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

10B = \(\frac{10^{2018}+1+9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

\(vì\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) => 10A > 10B => A > B

Oo Bản tình ca ác quỷ oO
14 tháng 4 2016 lúc 9:41

A > B nhé bn!!!!!!!!!!!!!!

6578

Huỳnh Thị Mỹ Duyên
14 tháng 4 2016 lúc 9:45

bn đọc kĩ đề đi

Nguyễn Minh Trang
Xem chi tiết
Naruto
10 tháng 4 2022 lúc 15:34

A>B do A>4 cònB<4