Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Bách
Xem chi tiết

A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 

A = 333300

SHINAGAWA AYUKI
Xem chi tiết
SHINAGAWA AYUKI
16 tháng 11 2018 lúc 22:20

Các bạn giúp mk với. Mk đang cần gấp 😦

KAl(SO4)2·12H2O
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 1 2018 lúc 13:38

cho bài kham khảo nè :

A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3};B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B

thank nha

Thắng  Hoàng
14 tháng 1 2018 lúc 13:39

A=1.2+2.3+3.4+...+2017.2018

3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3

3A=1.2.3+2.3.(4−1)+3.4.(5−2)+...+2017.2018.(2019−2016)

3A=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2017.2018.2019−2016.2017.2018

⇒3A=2017.2018.2019

⇒A=2017.2018.20193

A=2017.2018.20193;B=201833=2018.2018.20183

A=2739315938;B=2739316611

⇒A<B

Sooya
14 tháng 1 2018 lúc 13:40

\(A=1.2+2.3+3.4+4.5+............+2017.2018\)

\(3A = 1.2.3 + 2.3.4 +..............+ 2017.1018.3\)

\(3A = 1.2.3 + 2.3.(4-1) + .............. + 2017.2018.(2019-2016)\)

\(3A = 1.2.3 + 2.3.4 - 1.2.3 + ............. + 2017.2018.2019 - 2016.2017.2018\)

\(3A = 2017.2018.2019\)

\(A = \frac{2017.2018.2019}{3}\)

\(B =\frac {2018^3}{3}\)

đến đây ko bt lm

Tohio- Chan
Xem chi tiết
Kiên-Messi-8A-Boy2k6
29 tháng 4 2018 lúc 7:05

\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\Rightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow S=\frac{1}{2}-\frac{1}{2018}\)

\(\Rightarrow S=\frac{1008}{2018}\)

bạn rút gọn nốt nha mk ko có máy tính

Nguyễn Văn Thành
29 tháng 4 2018 lúc 5:55

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(S=\frac{1}{2}-\frac{1}{2018}\)

\(S=\frac{504}{1009}\)

HK TỐT NHÉ

nguyen thanh loan
29 tháng 4 2018 lúc 6:52

S = \(\frac{1}{2.3}\)\(\frac{1}{3.4}\) + \(\frac{1}{4.5}\)+ ..... + \(\frac{1}{2017.1018}\)

S = \(\frac{1}{2}\) - \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{5}\) + .....+ \(\frac{1}{2017}\)\(\frac{1}{2018}\)

S = \(\frac{1}{2}\) - \(\frac{1}{2018}\)

S = \(\frac{1008}{2018}\)

CHÚC BẠN HỌC GIỎI

honganh
Xem chi tiết
Bùi Thế Hào
23 tháng 11 2017 lúc 17:14

A=1.2+2.3+3.4+4.5+...+2017.2018

=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3

3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018

3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)

=> 3A=2017.2018.2019  => \(A=\frac{2017.2018.2019}{3}\);  \(B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018

=> 2017.2018.2019<2018.2018.2018

=> A<B

Ichigo Aikatsu
16 tháng 11 2018 lúc 12:17

Bui The Hao lam dung roi

mk cung dang can bai nay

Thanks vi da dang honganh

Sát Thủ Bóng Đêm
Xem chi tiết
nguyen duc thang
26 tháng 11 2017 lúc 9:31

Ta có : A=1.2+2.3+3.4+....+2015.2016

=>3A= 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 2017.2018.3

=>3A= 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5-2 ) + 4.5.( 6-3 ) + ... 2017 . 2018 . ( 2019 - 2016 )

=>3A=-1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 +.....+ 2017 . 2018 .2019 - 2017 . 2018 . 2016

=>A= 2017 . 2018 . 2019
 

Dương Thanh Ngân
Xem chi tiết
Mysterious Person
28 tháng 8 2018 lúc 20:57

ta có : \(S=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2017.2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{2018}=\dfrac{504}{1009}\)

Linh
Xem chi tiết
Họ hàng của abcdefghijkl...
Xem chi tiết