A=2018x2019-1
2017x2018+807x5
1x2x3+2x3x4+3x4x5+....+2018x2019
tính nhanh 2018x2019+4036/2019x2020-2
Ta có \(\frac{2018\times2019+4036}{2019\times2020-2}\)
\(=\frac{\left(2020-2\right)\times2019}{2019\times2020-2}\)
\(=\frac{2020\times2019-2\times2019+4036}{2019\times2020-2}\)
\(=\frac{2020\times2019-4038+4036}{2019\times2020-2}\)
\(=\frac{2020\times2019-2}{2019\times2020-2}\)
\(=1\)
a, Tìm một số biết 0,125 của số đó là: 5,32
b, Tính giá trị biểu thức A= \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2018x2019}\) =
\(x\) là dấu nhân
a: Số cần tìm là 5,32:0,125=42,56
b: \(A=1+\dfrac{1}{2019}-1-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}=0\)
Tính giá trị biểu thức
A= 2019/1x2 + 2019/2x3 + 2019/3x4 +.............+ 2019/2018x2019
Ai nhanh m tick nha
\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)
\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)
\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2019\left(1-\frac{1}{2019}\right)\)
\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)
Tính tổng
a) 1/2x3 + 1/3x4 + 1/4x5 + ... + 1/2018x2019
b) 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048
C=\(\dfrac{2}{1x2}\)+\(\dfrac{2}{2x3}\)+\(\dfrac{2}{3x4}\)+...+\(\dfrac{2}{2018x2019}\)+\(\dfrac{2}{2019x2020}\)
\(C=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+...+\dfrac{2}{2019\times2020}\)
\(=2\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{2019\times2020}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\right)\)
\(=2\left(1-\dfrac{1}{2020}\right)=2.\dfrac{2019}{2020}=\dfrac{2019}{1010}\)
lớp 5 đây á
no no
đây ko phải lớp 5 mọi người nhỉ ?
Tìm D biết:
D=(1/1x2)+(1/2x3)+(1/3x4)+...+(1/2018x2019)
lẹ lẹ tý coi
1/1x2 + 1/2x3 + 1/3x4 + .......+1/2018x2019
giải đầy đủ
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Dấu \(.\)là dấu nhân .
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
~ Ủng hộ nhé
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
so sánh 43/52 và 60/120 , So sánh 17/ 68 và 35 / 103 , So sánh 2018 x 2019-1/2018x2019 va 2019x2020-1/2019x2020
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)