S=1/101+1/102+1/103+...+1/200. Chứng minh S>7/12
S=1/101+1/102+1/103+...+1/200. Chứng minh: S > 7/12
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
Cho S= 1/101+1/102+1/103+...+1/200
Cmr S>7/12
Tham khảo:Câu hỏi của Đào Thị Hoàng Yến - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của bui hang trang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
chứng minh s= 1/101+ 1/102+ 1/103+ ...+ 1/200 không phải là số nguyên
Lời giải:
Dễ dàng thấy $S>0$
Mặt khác:
$S=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1$
Vậy $0< S< 1$ nên $S$ không phải số nguyên.
Hôm nay olm sẽ hướng dẫn các em giải dạng chứng minh một số không phải là một số nguyên thì các em cần sử dụng nguyên lý kẹp em nhé. Em cần chứng minh a < S < a + 1 ( a \(\in\) Z)
Sau đó em lập luận vì S nằm giữa hai số nguyên liên tiếp nên S không phải là số nguyên vì không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Giải:
S = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)+ \(\dfrac{1}{103}\)+ ...+ \(\dfrac{1}{200}\)
Xét dãy số: 101; 102;...; 200 có số số hạng là (200 - 101):1+1= 100
Mặt khác ta cũng có \(\dfrac{1}{101}\)> \(\dfrac{1}{102}\)> \(\dfrac{1}{103}\)> ...> \(\dfrac{1}{200}\)
⇒ \(\dfrac{1}{101}\) \(\times\) 100 > \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\) > \(\dfrac{1}{200}\) \(\times\) 100
⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{100}{200}\)⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{1}{2}\) ⇒ 1 > S > 0 ⇒ S \(\notin\) Z (đpcm)
Vì 0 và 1 là hai số nguyên dương liên tiếp nên S không phải là số nguyên do không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Chứng minh: 1/101 +1/102 +1/103 + ...+1/200 >=7/12
Lời giải:
Ta thấy:
$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{150}> \frac{1}{150}+\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}=\frac{50}{150}=\frac{1}{3}$ (1)
$\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}> \frac{1}{200}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{50}{200}=\frac{1}{4}$ (2)
Cộng kết quả (1) và (2) theo vế ta được:
$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}> \frac{1}{3}+\frac{1}{4}=\frac{7}{12}$
Chứng minh B=1/101+/102+1/103+......+1/199+1/200>7/12
a= 1/101+1/102+1/103+..+1/200 chứng minh a>7/12