tính giá trị của x để biểu thức \(A=\frac{x^2}{x^2+x+1}\) đạt GTLN. Tìm GTLN đó.
Bài 1:Tìm giá trị nguyên của x để biểu thức A = \(\frac{4x-3}{2x+1}\)có giá trị là số nguyên
Bài 2: Tìm giá trị nguyên của x để biểu thức A = \(\frac{3}{4-x}\)đạt giá trị lớn nhất.Tìm GTLN đó
Bài 3: Tìm giá trị nguyên x để biểu thức B = \(\frac{7-x}{4-x}\)Đạt GTLN.Tìm GTLN đó
lưu ý các bn nào giải đc bài nào thì viết ra ko nhất thiết là phải cả 3 bài nhưng nếu làm cả 3 bài mk tick cho 3 cái(dùng nick phụ tick nữa)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt GTLN. Tìm giá trị đó
Tìm gái trị của x để biểu thức đạt GTLN
\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}vớix>o\)
Tìm giá trị lớn nhất đó
\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}max\)
<=> (x + 1999)2 min
Mà (x + 1999)2 > 0 nên (x + 1999)2 min = 0 <=> x = -1999
Vậy GTLN của A(x) là 0 <=> x = -1999
Cách trình bày của ĐTV sai trầm trọng, lp 8 ko thể trình bày như thế
Mà Việt làm sai bét rồi,x>0 cơ mak,sao x=-1999 đc?
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Câu 1
Tìm GTLN
B=\(\frac{2\sqrt{x}}{x+1}\)
câu 2 Cho biểu thức
Q=\(\frac{x^2+x+1}{x^2+2x+1}\) với x khác -1
với giá trị nào của x thì biểu thức Q đạt GTLN,tìm GTLN của Q
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
mk nghĩ cả hai câu sai nhưng xem lại đề giống y chang
Cho biểu thức \(A=\frac{2006-x}{6-x}\)timf giá trị nguyên của x để A đạt GTLN . Tìm giá trị lớn nhất đó
Cho biểu thức P =\(\frac{2.\left|x\right|+3}{3.\left|x\right|-1}\)
tìm X thuộc Z để P đạt GTLN. Tìm GTLN đóTìm x thuộc Z để P có giá trị là 1 số tự nhiênP=\(\frac{2.\left|x\right|-1+4}{2.\left|x\right|-1}\)=1+\(\frac{4}{2.\left|x\right|-1}\)
1, Để P có GTLN thì 2.|x| -1 phải dương và có GTNN
Mà |x|>=0 với mọi x nên 2.|x| >=0
=> 2.|x| -1 có giá trị dương nhỏ nhất là 1 khi x=1 hoặc x= -1
=> GTLN của P =1 + 4/1 =1+4=5 khi x=1 hoặc x= -1
2, Đẻ P là số tự nhiên thì \(\frac{4}{2.\left|x\right|-1}\)là số tự nhiên
=> 2.|x| -1 là ước của 4
từ đó tìm ra x
Cho biểu thức A =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Tìm x để A đạt GTLN, tìm GTLN đó
Cho biểu thức A=7x-8/2x-3 với x khác 0 . Tìm các giá trị nguyên của x để biểu thức A đạt GTLN . Tìm GTLN đó.
Giúp mk với ạ ! * Cảm ơn*
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.