cho x+y=1 chứng minh rằng x^4+y^4>1/8
Cho x,y,z >0 và x+y+z = 6. chứng minh rằng \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)
\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge12.4^y\)
\(8^z+8^z+8^2\ge12.4^z\)
Cộng 3 vế BĐT trên => đpcm
Một cách khác:
Đặt $(2^x,2^y,2^z)=(a,b,c)\Rightarrow abc=2^{x+y+z}=2^6=64$
Bài toán trở thành:
Cho $a,b,c>0$ sao cho $abc=64$. CMR: $a^3+b^3+c^3\geq 4(a^2+b^2+c^2)$
------------------------------
Áp dụng BĐT Bunhiacopxky và AM-GM:
$(a^3+b^3+c^3)(a+b+c)\geq (a^2+b^2+c^2)^2$
\(\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2)^2}{a+b+c}(1)\)
Mà: \(a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\geq \frac{(a+b+c).3\sqrt[3]{abc}}{3}=\frac{(a+b+c).3\sqrt[3]{64}}{3}=4(a+b+c)(2)\)
Từ \((1);(2)\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2).4(a+b+c)}{a+b+c}=4(a^2+b^2+c^2)\) (đpcm)
Vậy.......
Cho x+y=1, chứng minh rằng\(x^4+y^4\ge\frac{1}{8}\)
Áp dụng BĐT phụ:\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)
\(\frac{x^4}{1}+\frac{y^4}{1}\ge\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left(\frac{x^2}{1}+\frac{y^2}{1}\right)^2}{2}\ge\frac{\frac{\left(x+y\right)^4}{4}}{2}=\frac{1}{8}\)
Dấu "=" xảy ra tại x=y=1/2
a)Cho x và y là hai số thực thoã mãn 3x-=1 chứng minh rằng : 5^2-^2<5/4
b)Cho x khác y ; x khác -y;y khác 0 thoã mãn y/x+y + 2y^2/x^2+y^2 + 4y^4/x^4+y^4 + 8y^8/x^8-y^8=2021 tính giá trị x/y
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.
Cho \(x+y>1\). Chứng minh rằng \(x^4+y^4>\frac{1}{8}\).
Em chỉ biết làm \(\hept{\begin{cases}x+y\ge1\\x^4+y^4\ge\frac{1}{8}\end{cases}}\)thôi ạ :v
Áp dụng liên tiếp hai lần bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\frac{\left(x+y\right)^4}{4}}{2}=\frac{\frac{1}{4}}{2}=\frac{1}{8}\)( đpcm )
Đẳng thức xảy ra <=> x=y=1/2
Cho x=y+1. Chứng minh rằng:
a) x3-y3-3xy=1
b) (x+y)(x2+y2)(x4+y4)(x8+y8)=x16-y16
a, Cho x + y = 1 và xy = -1. Chứng minh rằng : x^3 + y^3 = 4
b, Cho x - y = 1 và xy = 6. Chứng minh rằng : x^3 - y^3 = 19
a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)
\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)
b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)
\(=1\left(1+3.9\right)=19\)
Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x^4 + y^4 < 1
P/s : Sửa đề : Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x4 + y4 < 1
+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4
Mà x > y > 1 \( \implies\) x - y > 0
\( \implies\) ( x - y ) ( x4 + y4 ) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) ( * )
+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 )
= x ( x4 + x3y + x2y2 + xy3 + y4 ) - y ( x4 + x3y + x2y2 + xy3 + y4 )
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
Mà x5 - y5 < x5 + y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x - y
\( \implies\) x4 + y4 < 1 ( đpcm )
chứng minh rằng với x,y là các số dương
x + 4/x+1 + y + 9/y+1 >8
Ta có:
\(x+\dfrac{4}{x+1}+y+\dfrac{9}{y+1}=\left(x+1+\dfrac{4}{x+1}\right)+\left(y+1+\dfrac{9}{y+1}\right)-2\)
\(\ge2.2+2.3-2=8\)
Vì x,y > 0 nên dấu = không xảy ra.
Vậy ta có ĐPCM
Cho x=y+1. Chứng minh rằng:
a)\(x^3-y^3-3xy=1\)
b)\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)
a. Do \(x=y-1\Rightarrow x-y=1\)
Ta có:
\(A=x^3-y^3-3xy=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy.1-3xy=1\left(đpcm\right)\)
b. \(B=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
(Do \(x-y=1\))
(Bạn áp dụng hằng đẳng thức \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)vào bài toán)
Kết quả, \(B=x^{16}-y^{16}\left(đpcm\right)\)
a)\(x=y+1\Rightarrow x-y=1\Rightarrow\left(x-y\right)^3=1\)
Hay x3- 3xy(x-y) - y3=1 => x3- y3 -3xy =1
b) 1.(x+y)(x2+y2)(x4+y4)(x8+y8) = (x-y)(x+y)......................=(x2-y2)(x2+y2)..........=(x4-y4)(x4+y4)......=(x8-y8)(x8+y8) =x16-y16