Cho biết (x-1) . f(x) = (x+4) . f(x+8)
Chứng minh rằng f(x) có ít nhất 2 nghiệm
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
cho biết (x-1).f(x) = (x+4).f(x+8) với mọi x. Chứng minh rằng f(x) có ít nhất 2 nghiệm
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Cho biết (x-1).f(x) = (x+4).f(x+8) với mọi x. Chứng minh rằng f(x) có ít nhất 4 nghiệm
Cho biết (x-1)f(x)=(x+4)f(x+8) với mọi x.Chứng minh rằng f(x) có ít nhất 2 nghiệm
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
Suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
Suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
a) Tìm nghiệm của đa thức sau: x – 1/2x2
b) Cho biết (x – 1).f(x) = (x + 4). f(x + 8) với mọi x
Chứng minh rằng f(x) có ít nhất hai nghiệm.
a. Cho đa thức: x – 1/2 x2 = 0 -Phân tích được: x(1 – 1/2x) = 0 – suy ra: x = 0 hoặc: 1 – 1/2x = 0 ⇒ x = 2 – Vậy nghiệm của đa thức đã cho là x = 0; x = 2. b.Cho biết (x – 1).f(x) = (x + 4). f(x + 8) với mọi x Chứng minh rằng f(x) có ít nhất hai nghiệm. Vì (x – 1).f(x) = (x + 4). f(x + 8) với mọi x nên ta có: + Khi x = 1 thì 0.f(1) = (1 + 4).f(1 + 8) ⇒ 0 = 5. f(9) ⇒ f(9) = 0 ⇒ x = 9 là một nghiệm của f(x) + Khi x= – 4 thì (- 4 – 1).f(-4) = 0. f(-4 + 8) ⇒ -5.f(-4) = 0.f(4) ⇒ f(-4) = 0 ⇒ x= – 4 là một nghiệm của f(x) Vậy f(x) có ít nhất hai nghiệm là 1 và – 4 (đpcm) | |
nha bạn nào k cho mình nhớ nhắn tin cho mình biết mình sẽ k lại cho
Cho đa thức f(x) thỏa mãn điều kiện (x-1).f(x)= (x+4).f(x+8) . chứng minh rằng đa thức f(x) có ít nhất một nghiệm là số nguyên tố
mn giúp em câu này với ạ
Cho biết (2x-4). F(x) = (x-1).F(x+1) với mọi x. Chứng minh rằng F(x) có ít nhất hai nghiệm.
Vì (2x-4). F(x) = (x-1).F(x+1) với mọi x nên
+) Khi x=2 thì 0.F(2) = 1.F(3) => F(3) = 0
Vậy x=3 là một nghiệm của F(x).
+) Khi x = 1 thì -2F(1) = 0.F(2) => F(1) = 0
Vậy x = 1 là một nghiệm của F(x)
Do đó F (x) có ít nhất hai nghiệm là 3 và 1.
~ Chúc b học tốt nhaa~
b. chứng minh rằng đa thức
(x^2 - 4) * f(x) = (x-1) * f(x+1) có ít nhất ba nghiệm
c. cho đa thức f(x) thoả mãn
x * f(x+2) = (x^2 - 9) * f(x)
cmnr: Đa thức f(x) = 0 có ít nhất 3 nghiệm
Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm biết rằng: x. f(x+1) = (x+3). f(x)
Vì x f(x+1) = (x+3)f(x) với mọi x nên:
* khi x=0 thì 0.f(0-1) = (0+3).f(0) tương đương f(0)=0. vậy 0 là nghiệm của đa thức f(x)
* khi x=-3 suy ra -3.f(-3+2) = (-3 +3). f(-3)
-3f(-2) = 0f(-3) tuong duong f(-2) = 0. vậy -2 cũng là một nghiệm của f(x)
do đó đa thức f(x) có ít nhất 2 nghiệm là 0 và 2
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
Cho x. f(x)=(x-1).f(x+1)
CM: f(x) có ít nhất 2 nghiệm