Rút gọn biểu thức: \(M=\frac{a\sqrt{a}-2a+\sqrt{a}}{\sqrt{a}-a}\)
Rút gọn biểu thức \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)Với a,b>0
\(\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}\)=( \(\sqrt{a}+\sqrt{b}\))( a + \(\sqrt{ab}\)+ b ) / \(\sqrt{a}+\sqrt{b}\)
= a + \(\sqrt{ab}\)+ b
A=\(\sqrt{45a}-2\sqrt{\frac{4a}{3}}+\frac{\sqrt{18a}}{\sqrt{6}}+\sqrt{5\frac{1}{3}a}\)
Rút gọn biểu thức A
Cho biểu thức:
\(\frac{a}{\sqrt{a^2-b^2}}-(1+\frac{a}{\sqrt{a^2-b^2}})\div\frac{b}{a-\sqrt{a^2-b^2}}\)
với a>b>0
a, Rút gọn biểu thức
b, Xác định giá trị của biểu thức khi a bằng 3b
Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)
\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)
Chúc bạn học tốt ~
\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{\sqrt{a^2-b^2}b}\)
\(=\frac{ab-a^2+a^2-b^2}{\sqrt{a^2-b^2}b}\)
\(=\frac{b\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}b}\)
\(=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
b, Thay a = 3b
\(=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2}{4}}=\sqrt{\frac{1}{2}}\)
Rút gọn biểu thức: \(\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)(a ≥ 0; a ≠ 4)
\(P=\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}=\sqrt{a}-\left(\sqrt{a}+2\right)=-2\)
Ta có: \(P=\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}-\sqrt{a}-2=-2\)
Rút gọn biểu thức sau:
A= \(\sqrt{11-4\sqrt{7}}+\frac{4}{3-\sqrt{7}}-\frac{21}{\sqrt{7}}\)
A=\(\sqrt{\left(\sqrt{7}-2\right)^2}\)+\(\frac{25\sqrt{7}-63}{3\sqrt{7}-7}\)=\(\frac{12\sqrt{7}-28}{3\sqrt{7}-7}\)=4
Rút gọn biểu thức sau :
A=\(\dfrac{3}{2\sqrt{3}}+\dfrac{3-\sqrt{3}}{1-\sqrt{3}}\)
1.tính giá trị biểu thức \(A=\frac{1-ax}{1+ã}\sqrt{\frac{1+bx}{1-bx}}\)với \(x=\frac{1}{a}\sqrt{\frac{2a}{b}-1}\left(0< a< b< 2a\right)\)
2. cho \(M=\sqrt{\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1}\).rút gọn M vs \(0\le x\le1\)
Rút gọn biểu thức sau
\(A=\frac{\sqrt{x+2}}{\sqrt{x-3}}-\frac{\sqrt{x+1}}{\sqrt{x-2}}-\frac{3\sqrt{x-3}}{x-5\sqrt{x+6}}\)
Rút gọn biểu thức sau
\(A=\frac{\sqrt{x-3}}{\sqrt{x-2}}-\frac{2\sqrt{x-1}}{\sqrt{x-1}}+\frac{x-2}{x-2\sqrt{x+}2}\)