Tìm x:lx+1l+lx+3l+lx+5l=7x
Bài tìm x biết
a) 7x- I 2x-4 I=3x+12
b) l2x-6l +lx+2l=8
c) l2x-1l+l2x-5l=4
e) lx+5l+lx+3l=9
b) |2x - 6| + |x + 2| = 8
1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8 => -2x + 6 - x - 2 = 8 => -3x = 8 + 2 -6 = 4 => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))
2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)] => 2x - 6 - x - 2 = 8 => x = 8 + 6 +2 => x = 16 (loại vì 16 > 3)
3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8 => 2x - 6 + x + 2 = 8 => 3x = 8 + 6 - 2 = 12 => x = 4(chọn)
Vậy x = 4
c) |2x - 1| + |2x - 5| = 4
1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4 => -2x + 1 - 2x + 5 = 4 => -4x = 4 - 1 - 5 => -4x = -2 => x = \(0,5\)(loại)
2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4 => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5 => 0x = 0 => x\(\in R\)
3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4 => 4x = 4 + 1 + 5 => 4x = 10 => x = \(2,5\) (chọn)
Vậy x = 0,5 hoặc x = 2,5
d) |x + 5| + |x + 3| = 9
1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9 => -x - 5 - x - 3 = 9 => -2x = 9 + 5 + 3 => -2x = 17 => x = -8,5(chọn)
2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9 => x + 5 -x - 3 = 9 => 0x = 9 - 5 + 3 => 0x = 7(vô lý)
3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9 => 2x = 9 - 5 - 3 => 2x = 1 => x = 0,5(chọn)
Vậy x = -8,5 hoặc x = 0,5
a) 7x - |2x - 4| = 3x + 12 => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5
1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12 => 7x - 2x + 4 = 3x + 12 => 7x -2x -3x = -4 +12 => 2x = 8 => x = 4(chọn vì 4 > -0,5)
2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12 => 7x + 2x - 4 = 3x + 12 => 7x +2x - 3x = 4 + 12 => 6x = 16 => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )
Vậy x = 4
Tìm x nguyên biết:lx-1l+lx-3l+lx-5l+lx-7l=8
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> x - 1 + x - 3 + x - 5 + x - 7 = 8
4x - 16 = 8
4x = 8 + 16
4x = 24
=> x = 6
Vậy.........
Sai rồi nhé , Bonking .
\(\left|x-1\right|=\orbr{\begin{cases}x-1\left(x>0\right)\\-x+1\left(x< 0\right)\end{cases}}\)
tìm x:
lx +6l + lx -2l=8
lx-2l + lx-5l-3=0
a: |x+6|+|x-2|=8(1)
TH1: x<-6
Phương trình (1) sẽ trở thành:
-x-6+2-x=8
=>-2x-4=8
=>-2x=12
=>x=-6(loại)
TH2: -6<=x<2
Phương trình (1) sẽ trở thành:
\(x+6+2-x=8\)
=>8=8(luôn đúng)
TH3: x>=2
Phương trình (1) sẽ trở thành:
x+6+x-2=8
=>2x+4=8
=>2x=4
=>x=2(nhận)
Vậy: -6<=x<=2
b: \(\left|x-2\right|+\left|x-5\right|-3=0\)
=>\(\left|x-2\right|+\left|x-5\right|=3\left(2\right)\)
TH1: x<2
Phương trình (2) sẽ trở thành:
\(2-x+5-x=3\)
=>7-2x=3
=>2x=7-3=4
=>x=2(loại)
TH2: 2<=x<5
Phương trình (2) sẽ trở thành:
\(x-2+5-x=3\)
=>3=3(luôn đúng)
TH3: x>=5
Phương trình (2) sẽ trở thành:
x-2+x-5=3
=>2x-7=3
=>2x=10
=>x=5(nhận)
Vậy: 2<=x<=5
Tìm x
a) lx+1l + lx+2l + lx+3l = 2x
b) lx+1l + lx+3l + lx+5l = 4x
c) lx-5l - x = 3
l là dấu giá trị tuyệt đối
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Tìm x biết
a, l x+2 l + l2x-3l =5
b, 3.(2x-1) - lx-5l =7
c, l 2x-1l - 2x =3
d, 3x - l 2-3xl = 2
e, lx-4l + lx+5l =9
Giải giúp mình với 1 câu cũng được tick cho
gấp lắm
Bài 1 Tìm x
a lx-3/2l+l2.5-xl=0
b l3x-1l=l4-xl
c l2x+3l=x+3
Bài 2 Tìm giá trị nhỏ nhất
a B=lx-1/4l+lx-3/4l
b C=lx-1l+lx-2l+lx-5l
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
Đề HSG cấp huyện toán 7 :
Tìm x :
a:lx+1l+lx+3l+lx+5l=7x
b:Có x,y,z thuộc Z
\(x^3+y^3+z^3=x+y+z+2017\)
Mình còn mỗi 2 câu này mong các bạn giúp đỡ
a) |x + 1| \(\ge0\)
|x + 3| \(\ge0\)
|x + 5| \(\ge0\)
=> |x + 1| + |x + 3| + |x + 5| \(\ge0\)
=> 7x \(\ge0\)
Mà 7 \(>0\)
=> x \(\ge0\)
=> x + 1 + x + 3 + x + 5 = 7x
=> 3x + 9 = 7x
=> 4x = 9
=> x = \(\frac{9}{4}\)
a) Vì \(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\forall x\in R\Rightarrow7x\ge0\forall x\in R\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=x+1+x+3+x+5=3x+9\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{9}{4}\)
Tìm x và y biết
a. 2l2x-3l=1/2
b. 7,5-3l5-2xl=-4,5
c. l3x-4l+l5y+5l=0
d. lx+3l+lx+1l=3x
a) 2|2x-3| = 1/2
=> |2x-3| = 1/4
=> 2x-3 = 1/4 hoặc 2x-3 = -1/4
=> x = 13/8 hoặc x = 11/8
b) 7,5 - 3|5-2x| = -4,5
=> 3|5-2x| = 12
=> |5-2x| = 4
=> 5-2x = 4 hoặc 5-2x = -4
=> x = 1/2 hoặc x = 4,5
c) |3x-4| + |5y+5| = 0
=> 3x-4 = 0 hoặc 5y+5 = 0
=> x = 4/3 hoặc y = -1
d) |x+3| + |x+1| = 3x
=> x+3+ x+1 = 3x
=> 2x + 4 = 3x
=> x = 4