tìm s
Tính S = 1/2(1+2) + 1/3(1+2+3)+...+ 1/2015(1+2+...+2014+2015) + 1/2016(1+2+...+2015+2016
Tính S = 1/2(1+2) + 1/3(1+2+3)+...+ 1/2015(1+2+...+2014+2015) + 1/2016(1+2+...+2015+2016)
Tinh tong S=1/1×2+1/2×3+1/3×4+...+1/2014×2015+1/2015×2016
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
Tìm x thuộc Z biết:
1) 2016+2015+2014+...+x = 2016
2) 1+2+3+...+x = 1275
3) | x+2015 | + | x+2016| = 1
thiện xạ 5a3 có thể giải chi tiết ra đc k? Mk cần cách lm
2) 1+2+3+...+x=1275
Có SSH là: (x+1):1+1=x(SH)
=> (x+1).x:2=1275
=>(x+1).x=1275.2
=>(x+1).x=2550
=>(x+1).x=51.50
=>x=50
3) |x+2015|+|x+2016|=1
Ta thấy |x+2015| và |x+2016| > hoặc = 0 với mọi x
=> 1= 0+1=1+0
+) x+2015=0=>x=-2015
x+2016=1=>x=-2015
+) x+2015=1=>x=-2014
x+2016=0=> x=-2016
Vậy xE{...}
Tinh tong S=1/1×2+1/2×3+1/3×4+...+1/2014×2015+1/2015×2016
S = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2014x2015 + 1/2015x2016
S = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015 + 1/2015 - 1/2016
S = 1 - 1/2016
S = 2015
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-......+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2016 + 2/2015 +3/2014+ ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Cô ơi dấu hiệu chia hết cho 5 em mở không được
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
Tính: (1*2015+2*2014+3*2013+...+2015*1)/(1*2+2*3+3*4+4*5+...+2015*2016)