tìm số nguyên n để 5+n^2-2n chia hết cho n-2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm số nguyên n để 5+n^2-2n chia hết cho n-2
Ta có: \(\frac{5+n^2-2n}{n-2}=\frac{n\left(n-2\right)+5}{n-2}=n+\frac{5}{n-2}\)
Để 5+ n^2 -2n chia hết cho n-2 thì 5 chia hết cho n-2
Hay n-2 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng:
n-2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
Vậy...
Bài 1:Cho A=(n-1)(2n-3)-2n(n-3)-4n. Chứng minh A chia hết cho 3 với mọi số nguyên n.
Bài 2: Tìm số nguyên n để B= (n+2)(2n-3)+n(2n-3)+n(n+10) chia hết cho n+3.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Tìm số nguyên n để:
a,n-7 chia hết cho n-5
b,n+3 chia hết cho n-2
c,2n-4 chia hết cho n+2
d,2n+1 chia hết cho n-3
e,6n+4 chia hết cho 2n+1
f,3-2n chia hết cho n+1
g,(n+2)^2 -3(n+2)+3 chia hết cho (n+2)
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
Tìm số nguyên n để :
a) n + 5 chia hết cho n -1
b) 2n - 4 chia hết cho n + 2
c) 6n - 4 chia hết cho 2n + 1
d) 3 - 2n chia hết cho n + 1
tìm số nguyên x biết
3x+12=2x-4
14-3x=-x+4
2(x-2)+7=x-25
|a+3|=-3
tìm số nguyên n để
a, n+5 chia hết cho n-1
b,2n-4 chia hết cho n+2
c, 6n+4 chia hết cho 2n+1
d,3-2n chia hết cho n+1
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
Xin chào các bạn!
Mình là thành viên mới của olm.vn và mình rất thắc mắc về một số câu hỏi, các bạn giải giúp mình nhé:
1. Tìm năm chữ số đầu tiên (từ bên trái) của số 2008^2008
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
Tìm số nguyên n để:
a) n^2-4n+29 chia hết cho 5
b) n^2+2n+6 chia hết cho n+4
c) n^200+n^100+2 chia hết cho n^4+n^2+1
a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)
Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)
Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)
b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)
Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)
\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)
c) Ta thấy:
\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)
Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)