tìm các số nguyên x, y thỏa mãn : x2 +y2+5x2y2\(x^2+y^2+5x^2y^2+60=37xy\)
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+y^2+5x^2y^2+60=37xy\)
Tìm các số nguyên x, y thỏa mãn:
\(x^2+y^2+5x^2y^2+60=37xy\)
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
Tìm tất cả các số nguyên x,y thỏa mãn \(x^2+y^2+5x^2y^2+60=37xy\)
Ta có
PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0
Xét pt theo ẩn x ta có để pt có nghiệm thì
∆\(\ge0\)
<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)
<=> - 20y4 + 165y2 - 240\(\ge0\)
<=> 1 < y2 < 7
=> y2 = 4
=> y = (2;-2)
=> x = (2;-2)
tìm các số nguyên x,y thỏa mãn: \(^{x^2+y^2+5x^2y^2+60=37xy}\)
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
xong nha
Tìm các số nguyên x, y thỏa mãn :
x2 + y2 + 5x2y2 + 60 = 37xy
em như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
tìm các số nguyên x,y thỏa mãn : x2 + y2 + 5x2y2 + 60 = 37xy
Trả lời
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
giải như sau:@_@
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
\(x^2+y^2+5x^2y^2+60=37xy\)
\(\Leftrightarrow x^2\left(1+5y^2\right)-3xy+\left(y^2+60\right)=0\)
\(\Leftrightarrow\Delta=-20y^4+165y^2-240\)
\(\Leftrightarrow20y^4-165y^2+240\le0\)
\(\text{Ma: }xy\inℤ\Rightarrow0\le y^2\le6\)
\(\Rightarrow xy\in\left\{\pm1;\pm2\right\}\)
tìm các số nguyên x,y thỏa mãn:x^2+y^2+5x^2.y^2+60=37xy
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
Tìm các số nguyên x,y thõa mãn x2 + y2+ 5x2y2 + 60 = 37xy
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
Tìm \(x,y\in Z\): \(x^2+y^2+5x^2y^2+60=37xy\)
\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)
\(\Rightarrow5x^2y^2-35xy+60\le0\)
\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\)
Thế vào pt đầu \(\Rightarrow...\)