Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Nhàn
Xem chi tiết
Nguyễn Minh Hiếu
7 tháng 11 2017 lúc 14:04

4-\(x^2\)+2x

=-x\(^2\)+2x-1+5

=-(x\(^2\)-2x+1)+5

=-(x-1)\(^2\)+5

có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R

=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R

vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1

Thùy Dương
Xem chi tiết
Huyền
Xem chi tiết
♥
30 tháng 10 2017 lúc 19:46

5-/3x-4/

ta có: /3x-4/\(\ge0,\forall x\)

\(\Rightarrow\)5-/3x-4/\(\le5\)

Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)

Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)

\(\left(4x-6\right)^{2008}+8\)

ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)

\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)

dấu "=" xảy ra khi (4x-6)2008=0

                           => 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)

vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Cao Quỳnh Nga
Xem chi tiết
Nguyễn Huệ Lam
26 tháng 6 2017 lúc 9:50

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

Nguyễn Huệ Lam
26 tháng 6 2017 lúc 9:45

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Lê Minh Anh
26 tháng 6 2017 lúc 9:46

a) x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4

=(x - 1/2)2 + (y + 3)+ 3/4 \(\ge\)3/4

Dấu "=" xảy ra <=> (x - 1/2)2 = 0 và (y + 3)2 = 0   <=> x = 1/2 ; y = -3

Vậy GTNN của bt đã cho là 3/4 khi x = 1/2 và y = -3

b) A = 2x - 2x2 - 5

<=> 2A = 2(2x -  2x2 - 5)

<=> 2A = -4x2 + 4x - 5

<=> 2A = -(4x2 - 4x + 1) - 4

<=> 2A = -(2x - 1)2 - 4\(\le\)-4

<=> A \(\le\)-2

Dấu "=" xảy ra <=>: (2x - 1)2 = 0   <=> x = 1/2

Vậy GT LN của bt đã cho là -2 khi và chỉ khi x = 1/2

Xem chi tiết
Xyz OLM
19 tháng 2 2023 lúc 18:38

b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)

Để Q đạt max 

thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0 

lại có \(x\inℤ\) 

nên 12 - x = 1 

<=> x = 11 

Khi đó Q = 17

Vậy Qmax = 5 khi x = 11 

Nguyễn Lê Hoàng Hạnh
Xem chi tiết
Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 22:07

a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)

Dấu '=' xảy ra khi x=-5

Hồ Nhật Tân
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
13 tháng 8 2019 lúc 7:05

+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)

\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)

+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)

\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)

Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)

Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)