tìm giá trị lớn nhất của biểu thức -125-(x-4)^2-(y-5)^2
Giusp mik với,MIK cẢM ƠN
tìm giá trị lớn nhất của biểu thức 4- x^2 +2x
Làm ơn giúp mik vs nha mn!!!!! Cảm ơn
4-\(x^2\)+2x
=-x\(^2\)+2x-1+5
=-(x\(^2\)-2x+1)+5
=-(x-1)\(^2\)+5
có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R
vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1
Tìm x:
a/ Tìm giá trị nhỏ nhất của biểu thức A= Ix+2,8I-3,5
b/ Tìm giá trị lớn nhất của biểu thức B=\(\frac{-3}{4}-\)lx-1,5l
giúp mik với! giải chi tiết giúp mik nha! cảm ơn nhiều!
Tìm giá trị lớn nhất của biểu thức 5-/3x-4/ là số nào?
Tìm giá trị nhỏ nhất của biểu thức (4x-6)^2008+8 là số nào?
HELPPPPP,GẤP LẮM,MIK CẢM ƠN
5-/3x-4/
ta có: /3x-4/\(\ge0,\forall x\)
\(\Rightarrow\)5-/3x-4/\(\le5\)
Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)
Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)
\(\left(4x-6\right)^{2008}+8\)
ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)
dấu "=" xảy ra khi (4x-6)2008=0
=> 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)
vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
tìm giá trị nhỏ nhất của biểu thức:
\(x^2+y^2-x+6y+10\)
tìm giá trị lớn nhất của biểu thức
\(2x-2x^2-5\)
giúp mik với mik tik cho :)
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4
=(x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\)3/4
Dấu "=" xảy ra <=> (x - 1/2)2 = 0 và (y + 3)2 = 0 <=> x = 1/2 ; y = -3
Vậy GTNN của bt đã cho là 3/4 khi x = 1/2 và y = -3
b) A = 2x - 2x2 - 5
<=> 2A = 2(2x - 2x2 - 5)
<=> 2A = -4x2 + 4x - 5
<=> 2A = -(4x2 - 4x + 1) - 4
<=> 2A = -(2x - 1)2 - 4\(\le\)-4
<=> A \(\le\)-2
Dấu "=" xảy ra <=>: (2x - 1)2 = 0 <=> x = 1/2
Vậy GT LN của bt đã cho là -2 khi và chỉ khi x = 1/2
a) Tìm x,y \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
b) Tìm giá trị lớn nhất của biểu thức \(Q=\dfrac{27-2x}{12-x}\) (với x là số nguyên)
giúp mik với, mik cần gấp
b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)
Để Q đạt max
thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0
lại có \(x\inℤ\)
nên 12 - x = 1
<=> x = 11
Khi đó Q = 17
Vậy Qmax = 5 khi x = 11
GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC B=6X+3-[6X-4] LÀ???
GIÚP MIK VỚI, MIK CẢM ƠN CÁC BẠN NHÌU LẮM
A) Với giá trị nào của x thì biểu thức A = 2021 - ( x+5)2 có giá trị lớn nhất? Tìm giá trị lớn nhất đó.
B) So sánh: A = \(\dfrac{2020^{100}-10}{2020^{90}-10}\) với \(B=\dfrac{2020^{99}-1}{2020^{89}-1}\)
Giúp mik với T_T
Cảm ơn nhiềuuuu<333
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
Tìm giá trị nhỏ nhất của biểu thức:
P=|x-1/2|+3/4-x
giải giúp mik nha!
mik cảm ơn trước ạ!
+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)
\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)
+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)
\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)
Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)
Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)
\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)