cho x,y thuộc Z. CHứng minh rằng A=75 xy(x^2-y^2) chia hết cho 45.
Cho các số nguyên dương x, y và z sao cho x^2 = (z − y)(z + y − 2). Chứng minh rằng xy − x chia hết cho x + y − z.
Tìm x,y thuộc Z biết
a) 4x-xy+2y+3
b) 3y-xy-2x-5=0
c) 2xy-x-y=100
bài 2 cho a,b thuộc z biết
ab-ac+bc-c^2=-1
chứng minh a và b là 2 số đối nhau
bài 3. cho a,b,c thuộc Z và a+c+c=6
chứng minh a^3+b^3+c^3 chia hết cho 6
bài 4 cho x,y thuộc Z chứng minh nếu 6x+11y chia 31 thì x+7y chia hết cho 31
bài 5 chứng minh với mọi n thuộc Z thì (n-1)(n+2)+12 ko chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
Bài 1: Cho a, b, x, y thuộc Z, trong đó x, y không đối nhau. Chứng minh rằng nếu a.x - b.y ⁞ x+y thì a.y - b.x ⁞ x+y thì a.y - b.x ⁞ x+y.
Bài 2: Cho:
A = 1 + 2 - 3 - 4 + 5 + 6 -...- 99 - 100
a) A có chia hết cho 2, 3, 5 không?
b) Tìm số các ước nguyên của A.
Bài 3: Tìm x, y thuộc Z biết:
a) xy +3x - 7y = 21.
b) xy + 3x - 2y =11.
c) [x+1] + [x+2] +...+ [x+100] = -1.
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Cho các đa thức A=x^2y ;B=xy^2 .Chứng tỏ rằng nếu x,y thuộc Z và x+y chia hết cho 13 thì A+B chia hết cho 13 .Cần trả lời gấp từ đây đến 2h chieu nay
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2
Cho A = 2x^2yz ; B = xy^2z. Chứng tỏ rằng:
Nếu x, y thuộc Z và 2x + y chia hết cho m (m thuộc Z*) thì A + B chia hết cho m.
Ta có :
\(A+B=2x^2yz+xy^2z\)
\(=xyz\left(2x+y\right)\)
Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)
Do đó : \(A+B⋮m\) (đpcm)
1) Cho các đơn thức:
A=x2y
B=xy2
Chứng minh: Nếu x+y chia hết cho 13 thì A+B chia hết cho 13
2) Cho A= x2yz; B=xy2z; C=xyz2 và x+y+z=1
Chứng minh: A+B+C=x+y+z
BÀI 1:
\(A+B=x^2y+xy^2\)
\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)
Vì \(x+y\)\(⋮\)\(13\)
nên \(xy\left(x+y\right)\)\(⋮\)\(13\)
Vậy \(A+B\)\(⋮\)\(13\) nếu \(x+y\)\(⋮\)\(13\)
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
Cho các số nguyên dương x, y, z thỏa mãn: \(x^2+y^2=z^2\)
a) Chứng minh A=xy chia hết cho 12
b) Chứng minh B = \(x^3y-xy^3\) chia hết cho 7
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)