Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
AVĐ md roblox
8 tháng 2 2023 lúc 20:39

???

9323
8 tháng 2 2023 lúc 20:58

bn ơi???

Phạm Hoàng Hiệp
Xem chi tiết
Meopeow1029
Xem chi tiết
Yeutoanhoc
17 tháng 5 2021 lúc 20:38

`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`

迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:42

+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)

Giải:

 \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}\) 

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

...

\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}< \dfrac{1}{2020.2021}\) 

\(\Rightarrow M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}\) 

\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\) 

\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2021}< 1\)

\(\Rightarrow M< 1\left(1\right)\) 

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

...

\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\) 

\(\Rightarrow M>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}\) 

\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)  

\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}=\dfrac{1}{3}+\dfrac{56}{337}>\dfrac{1}{3}\left(2\right)\)  

Vậy \(\dfrac{1}{3}< M< 1\) (đpcm)

Chúc bạn học tốt!

Phạm Hoàng Hiệp
Xem chi tiết
bincorin
Xem chi tiết
Nguyễn Minh Hiếu
18 tháng 2 2017 lúc 19:23

bạn giải đi

Lê Khánh Hưng
20 tháng 2 2017 lúc 15:13

Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153  > 48/192 =1/4. ĐPCM

Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM

Tống Sỹ Hoàng Anh
29 tháng 3 2019 lúc 19:59

hay lắm bạn ạ

Carthrine Nguyễn
Xem chi tiết
Isolde Moria
25 tháng 8 2016 lúc 16:01

Ta có

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

\(\Rightarrow A>\frac{1}{4}+\frac{42}{9.51}>\frac{1}{4}\)

Vậy A>1/4

b)

Ta có

\(A< \frac{1}{3}^2+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{9}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{50}\)

\(\Rightarrow A< \frac{4}{9}-\frac{1}{50}< \frac{4}{9}\)

Vậy A<4/9

chim cánh cụt
Xem chi tiết
Huy hoàng indonaca
29 tháng 7 2017 lúc 16:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )

Trương Việt Hoàng
Xem chi tiết
Từ Quỳnh Hương
Xem chi tiết