1. Làm tính nhân:
a. 3x(5x2 - 2x - 1)
b. (x2+2xy -3)(-xy)
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1)
Bài 1. Làm tính nhân:
a) 3x(5x2 - 2x - 1);
b) (x2 - 2xy + 3)(-xy);
c) x2y(2x3 -
xy2 - 1);
d) x(1,4x - 3,5y);
e) xy(
x2 -
xy +
y2);
f)(1 + 2x - x2)5x;
g) (x2y - xy + xy2 + y3). 3xy2;
h) x2y(15x - 0,9y + 6);
a) \(3x\left(5x^2-2x-1\right)\)
\(=3x.5x^2-3x.2x+3x.\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^3-2xy+3\right)\left(-xy\right)\)
\(=\left(-xy\right).\left(x^2+2xy-3\right)\)
\(=\left(-xy\right).x^2+\left(-xy\right).2xy+\left(-xy\right).\left(-3\right)\)
\(=x^3y-2x^2y^2+3xy\)
mấy câu sau vt lại đè
Thực hiện phép tính
a) 3x(5x2 - 2x - 1); b) (x2 - 2xy + 3)(-xy); c) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2 d) (2x3 - 21x2 + 67x - 60): (x -
| e) (x - 7)(x - 5); f) (x2y - xy + xy2 + y3). 3xy2; g)(2x3-9x2+19x-15):(x2-3x+5) h)(x3 - 3x2 + x - 3):( x - 3) |
a: \(=15x^3-6x^2-3x\)
e: \(=x^2-12x+35\)
Bài 1. Làm tính nhân:
a) 3x2 (2 - 5xy)
b) -\(\dfrac{2}{3}\) xy (xy2 - x3 + 4)
c) ( x - 7 y )( xy + 1)
Bài 2. Rút gọn các biểu thức sau:
a) 5x(4x2 - 2x +1) - 2x(10x2 - 5x - 2)
b) 3x( x - 2) - 5x(1- x) - 8(x2 - 3)
d) (x3 - 2x)(x2 +1)
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu
Bài1:Làm tính nhân:
a) 2x. (x2– 7x -3) b) ( -2x3+ y2-7xy). 4xy2 c)(-5x3).(2x2+3x-5)
d)(x2-2x+3). (x-4) e) ( 2x3-3x -1). (5x+2) g) 3(2x-1)-5(x-3)
\(a,=2x^3-14x^2-6x\\ b,=-8x^4y^2+4xy^4-28x^2y^3\\ c,=-10x^5-15x^4+25x^3\\ d,=x^3-4x^2-2x^2+8x+3x-12=x^3-6x^2+11x-12\\ e,=10x^4+4x^3-15x^2-6x-5x-2=10x^4+4x^3-15x^2-11x-2\\ g,=6x-3-5x+15=x+12\)
Bài 1: Làm tính nhân:
a) 2x. (x2 – 7x -3) b) ( -2x3 + y2 -7xy). 4xy2
c)(x – 2)(x2 + 3x – 4) d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4) f) ( 2x3 -3x -1). (5x+2)
g) ( 25x2 + 10xy + 4y2). ( 5x – 2y) h) (2x – 1)(3x + 2)(3 – x)
Bài 2: Thực hiện phép tính:
a) ( 2x + 3y )2 b) ( 5x – y)2
c) (x – 2)(x2 + 2x + 4) d) e) (2x + y2)3 f) (2x – 1)3
g) 3x3y2 : x2 h) (x5 + 4x3 – 6x2) : 4x2 i) (x3 – 8) : (x2 + 2x + 4) j) (x3 – 3x2 + x – 3) : (x – 3)
e. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
Bài 3: Tính nhanh:
a) 20042 - 16; b) 8922 + 892 . 216 + 1082
c) 362 + 262 – 52 . 36 d) 993 + 1 + 3(992 + 99)
e) 97.103 f) 1012 g) 1052 – 52
Bài 4: Phân tích các đa thức sau thành nhân tử:
a) x3 - 2x2 + x b) x2 – 2x – 15
c) 5x2y3 – 25x3y4 + 10x3y3 d) x2 – 5x + 5y – y2
e) 4x(x – 3) – 2x + 6 f) 10x(x – y) – 6y(y – x)
g) 27x2( y- 1) – 9x3 ( 1 – y) h) 36 – 12x + x2
i) 4x2 + 12x + 9 j) 3x3y2 – 6x2y3 + 9x2y2
k) 3x2 – 6x + 9x2 l) xy + xz + 3y + 3z m) xy – xz + y – z n) 11x + 11y – x2 – xy Bài 5: Phân tích các đa thức sau thành nhân tử:
Bài 6: Phân tích đa thức thành nhân tử
a) 5x2 – 10xy + 5y2 – 20z2 b) 16x – 5x2 – 3
c) x2 – 5x + 5y – y2 d) 3x2 – 6xy + 3y2 – 12z2
e) x2 + 4x + 3 f) (x2 + 1)2 – 4x2 g) x2 – 4x – 5
h) x5 – 3x4 + 3x3 – x2
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
Bài 8:Tìm x,biết:
a) 3x3 – 6x = 0 b) x4 – 25x2 = 0 c) 2x(x – 4) + x – 4 = 0
d) 4x(x – 3) – 2x + 6 = 0 e) 5x(x – 1 ) – x + 1 = 0 f) 2x3 + 4x = 0
Bài 9: Tìm giá trị nhỏ nhất của biểu thức
a) A = x2 – 6x + 11 b) B = x2 – 20x + 101
c) C = x2 – 4xy + 5y2 + 10x – 22y + 28
Bài 10: Tìm giá trị lớn nhất của biểu thức
a) A = 4x – x2 + 3 b) B = – x2 + 6x – 11
Bài 11: CMR
a) a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
b) a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên
c) x2 + 2x + 2 > 0 với mọi x
d) –x2 + 4x – 5 < 0 với mọi x
Bài 12: a) Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1
b) Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2.
Bài 13: Thực hiện phép tính:
Bài 14: Cho phân thức:
a) Tìm điều kiện của x để phân thức đã cho được xác định?
b) Rút gọn phân thức?
c) Tính giá trị của phân thức sau khi rút gọn với x=
Bài 15: Cho phân thức: P =
a. Tìm điều kiện của x để P xác định.
b. Tìm giá trị của x để phân thức bằng 1.
Bài 16: Cho biểu thức
a. Tìm x để biểu thức C có nghĩa.
b. Rút gọn biểu thức C.
c. Tìm giá trị của x để biểu thức có giá trị –0,5.
Bài 17: Cho biểu thức:
a) Tìm điều kiện của x để giá trị của biểu thức được xác định?
b) CMR: khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
Bài 18: Tìm điều kiện của biến để giá trị của biểu thức sau xác định?
Bài 19: Cho phân thức
a. Tìm giá trị của x để phân thức bằng 0?
b. Tìm x để giá trị của phân thức bằng 5/2?
c. Tìm x nguyên để phân thức có giá trị nguyên?
a) \(2x^3-14x^2-6x\)
b)\(-8x^4y^2+4xy^4-28x^2y^3\)
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Tính:
a)\(\dfrac{1}{2}\)x2y.(2x3-\(\dfrac{2}{5}\)xy2-1)
b)(x2-2x+3).(\(\dfrac{1}{2}\)x-5)
a: \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
\(=x^5y-\dfrac{1}{5}x^3y^3-x^2y\)
b: \(\left(\dfrac{1}{2}x-5\right)\left(x^2-2x+3\right)\)
\(=\dfrac{1}{2}x^3-x^2+\dfrac{3}{2}x-5x^2+10x-15\)
\(=\dfrac{1}{3}x^3-6x^2+\dfrac{23}{2}x-15\)
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)