Cho đa thức F(x) = ax + b. Xác định a và b biết F(1) = 3, F(-2) = 2.
: Cho đa thức f(x) = ax + b a) Biết f(0) = 3; f(2) = 7, tìm a, b và xác định f(x). b) Biết f(2) = 8; f(– 2) = 12, tìm a, b và xác định f(x)
: Cho đa thức f(x) = ax + b a) Biết f(0) = 3; f(2) = 7, tìm a, b và xác định f(x). b) Biết f(2) = 8; f(– 2) = 12, tìm a, b và xác định f(x) Giiusp mình với ạ
Bài: a) Xác định đa thức f(x) = ax + b biết f(2) = - 4 ; F(3) = 5.
b) Xác định a và b biết nghiệm của đa thức G(x) = x2 – 1 là nghiệm của đa thức Q(x) = x3 + ax2 + bx – 2
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho đa thức F(x)= ax+ b. Xác định a và b để F(1) = 3 ; F(-2) = 2.
\(F\left(1\right)=a+b=3;F\left(-2\right)=-2a+b=2\)
\(\Rightarrow a=\dfrac{1}{3};b=\dfrac{8}{3}\)
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
XÁc định hệ số a và b của đa thức F(x)=ax +b .Biết F(0)=3 và F(1)=2
f(x)=ã+b
f(0)=b=3
f(1)=a+b=2
Thay b=3 vào f(1) ta có:
f(1)=a+3=2 suy ra a=-1
Vậy a=-1;b=3
\(f\left(x\right)=ax+b\)
\(f\left(0\right)=b=3\)
\(f\left(1\right)=a+b=2\)
Thay b = 3 vào f(1)
\(f\left(1\right)=a+3=2\Rightarrow a=-1\)
Vậy b = 3; a = -1
Xác định hệ số a,b của đa thức f(x)=ax+b biết f(-1)=5 và f(2)=-2
Ta có: f(-1)=5
f(2)=-2
Do đó: \(\left\{{}\begin{matrix}-a+b=5\\2a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=7\\-a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-7}{3}\\b=5+\dfrac{-7}{3}=\dfrac{15}{3}-\dfrac{7}{3}=\dfrac{8}{3}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{7}{3};b=\dfrac{8}{3}\)
cho đa thức f(x)=x^3+ax^2+bx-2-y
a) xác định a,b biết đa thức có 2 nghiệm là -1 và 1
b)tìm nghiệm còn lại của f(x)