Cho A = 2.(1^2+2^2+3^2+4^2+...+2017^2). Hỏi A có là bình phương của số nguyên không
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
cho A=12+22+32+...+20172.Hỏi Acó phải là bình phương của 1 số tự nhiên hay không
cho a =2(1^2+2^2+3^2+4^2+....+2012^2+2013^2)hỏi a có phải là bình phuwng của một số nguyên hay không
Cho A=\(^{1^2+2^2+3^2+4^2+...+101^2}\)
a) A là số chẵn hay số lẻ? Giải thích
b)2*A có là bình phương của một số nguyên không?Vì sao
a) Vì bình phương của 1 số lẻ là 1 số lẻ;bình phương của 1 số chẵn là 1 số chẵn
mà A có 51 số lẻ=) tổng của chúng là 1 số lẻ
A có 50 số chẵn =) tổng chúng là 1 số chẵn
=) tổng của cả số lẻ và số chẵn là 1 số lẻ
hay nói cách khác A là 1 số lẻ.
Cho A=1/2^2 + 1/3^2 + 1/4^2 +....+ 1/2017^2 Chứng minh A không phải là số nguyên
1 . Tìm số nguyên tố xy (x>y>0) sao cho: xy - yx là số chính phương.
2. chứng minh
a, tổng ba số cp liên phương liên tiếp chia 3 dư 2.
b, a=1^2 +2^2+3^2+4^2+...+56^2 không là số chính phương.
c, tổng bình phương của 2 số lẻ bất kì ko phải là số chính phương.
3, tìm x,y để A=xxyy là số chính phương (xxyy có gach trên đầu nhé)
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y= 4
Bài 2:
a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2
Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2
=> Tổng 3 số cp liên tiếp chia 3 dư 2
c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2
(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1
= 8x2+2=2(4x2+1)
Ta có: 2 chia hết cho 2
=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2
mà 4x2+1 là số lẻ nên không chia hết cho 2
Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y=4
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
1.Cho A = 1^2 + 2^2 + 3^2 + 4^2 +.......+ 101^2
a.A là số chẵn hay số lẻ? Giải thích
b.2*A có là bình phương của một số nguyên không ? Vì sao ?
2. Một trường THCS có khoảng từ 350 đến 400 học sinh.Khi xếp hàng 12 hoặc 15 đều thừa 5 học sinh.Hỏi số học sinh trường đó là bao nhiêu?
1. Cho a là số nguyên. Chứng minh M = ( a + 1 ) ( a + 2 ) ( a + 3 ) ( a + 4 ) + 1 là bình phương của một số nguyên
2. Phân tích đa thức thức thành nhân tử :
( x^2 + x + 1 ) ( x^2 + x + 2 ) - 12
1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)
\(=\left(a^2+5a+5\right)^2\)
=> Đpcm
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1
= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1
= [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1
Đặt t = a2 + 5a + 4
M <=> t[ t + 2 ] + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )
( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)
Đặt t = x2 + x + 1
(*) <=> t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )
= ( x2 + x - 2 )( x2 + x + 5 )
= ( x2 + 2x - x - 2 )( x2 + x + 5 )
= [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )
= ( x + 2 )( x - 1 )( x2 + x + 5 )
2. Đặt \(t=x^2+x+1\)
pt \(\Leftrightarrow t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)\)
\(=\left(t-3\right)\left(t+4\right)\)
Thay vào ta được \(\left(x^2+x-2\right)\left(x^2+x+5\right)\)