Cho \(\frac{a-x}{b-y}\)=\(\frac{a}{b}\). Chứng minh rằng: \(\frac{x}{y}\)=\(\frac{a}{b}\)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)
làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe)
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
a)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=0\)
\(\Rightarrow xy+yz+xz=0\)
\(x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2xy+2yz+2xz\)
\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Do \(xy+yz+xz=0\)
\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2\) ( đpcm )
b)
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}\)
\(\Rightarrow\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}=0\)
\(\Rightarrow2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}\right)=0\)
\(\Rightarrow\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}=0\)
\(\Rightarrow\frac{\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(b-c\right)^2\left(a-b\right)\left(c-a\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)
\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)
\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(-a+a\right)+\left(-b+b\right)+\left(-c+c\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)
\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right).0}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)
\(\Rightarrow0=0\) ( đpcm )
Cho\(\frac{a}{k}=\frac{x}{a}\); \(\frac{b}{k}=\frac{y}{b}\). Chứng minh rằng \(\frac{a^2}{b^2}=\frac{x}{y}\)
Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
=> a2 = x.k; b2 = y.k
=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)
a/k = x/a => a2 = kx (1)
b/k = y/b => b2 = ky (2)
chia (1) cho (2) có;
a2/b2 =x/y
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)
Ta có:
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)
Chúc bạn học tốt!
Cho phân số \(\frac{a}{b}\) .Chứng minh rằng: \(\frac{a-x}{b-y}=\frac{a}{b}\Rightarrow\frac{x}{y}=\frac{a}{b}\)
ta co :\(\frac{a-x}{b-y}=\frac{a}{b}\Rightarrow b\left(a-x\right)=a\left(b-y\right)\)
\(\Rightarrow ba-bx=ab-ay\)
\(\Rightarrow ba+ay=bx+ab\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\frac{x}{y}=\frac{a}{b}\)
Minh chac chan 100% tick cho minh nha
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng .
Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)
\(=\dfrac{9}{2}-3=1,5\)
Dấu " = " khi a = b = c
Bài 5:
Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)
Dấu " = " khi a = b = c = d = 1
7) VP phải là abc nha
\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế của 3 BĐT trên
\(\left[VT\right]^2\le VP^2\)
Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
2) Giả sử \(a\le0\):
Nếu a=0 thì trái với abc>0
Nếu a<0: Do a+b+c>0 nên b+c>0. Do abc>0 nên bc<0
Suy ra a(b+c)+bc<0, mâu thuẫn với ab+bc+ca>0
Vậy a>0
Tương tự ta có b>0;c>0
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) chứng minh rằng x^2/a^2 +y^2/b^2 +z^2/c^2 = 1
chịu khó lắm
Ok
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
mik đăng dc 5 phút thì 5 phút sau mik lm dk rui
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\) =0 Chứng minh rằng x^2/a^2 + y^2/b^2 +z^2/c^2 =1
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\frac{xbc+yac+zab}{abc}=1\)
\(\Rightarrow xbc+yac+zab=abc\)
\(\Rightarrow\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2.xbc.yac+2.yac.zab+2.xbc.zab=\left(abc\right)^2\)
\(\Rightarrow x^2b^2c^2+y^2a^2c^2+z^2a^2b^2+2abc\left(cxy+ayz+bxz\right)=\left(abc\right)^2\)
\(\Rightarrow x^2b^2c^2+y^2a^2c^2+z^2a^2b^2=a^2b^2c^2\)
\(\Rightarrow\frac{x^2b^2c^2+y^2a^2c^2+z^2a^2b^2}{a^2b^2c^2}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
a) Cho x, y, z > 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Chứng minh rằng : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
b) Cho a, b, c là độ dài ba cạnh của một tam giác . Chứng minh :
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
c) Cho a, b, c > 0 thỏa mãn : abc = ab + bc + ca . Chứng minh :
\(\frac{1}{a+2b+3c}+\frac{1}{b+2c+3a}+\frac{1}{c+2a+3b}\le\frac{3}{16}\)
a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)
Dấu "=" xảy ra <=> a=b
Áp dụng BĐT (*) vào bài toán ta có:
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Tiếp tục áp dụng BĐT (*) ta có:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:
\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra <=> a=b=c
a)
Áp dụng BĐT Bunyakovsky dạng phân thức
b)
Áp dụng BĐT \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\)
c)
Viết giả thiết lại thành \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)sau đó làm như câu a
EZ game