Chung minh rang:(x-y)+(z-t)=(x+z)-(y+t)
cho x/y=y/z/=z/t .chung minh rang:(x+y+z/y+z+t)^3=x/t
Áp dụng tính chất dãy tỉ số bằng ngau ta có :
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{x+y+z}{y+z+t}\)
\(\Rightarrow\dfrac{x.y.z}{y.z.t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrow\dfrac{x}{t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrowđpcm\)
cho x=a/b va y=b/m voi a,b,m thuoc Z ;m>0 va x<y .Chung minh rang Z=a+b/2m thi x<Z<t
Chung minh rang
(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(y+z)(z+x)
12
24
36
48
60
72
84
96
208
120
132144
156
168
180
Chung minh A= x/y+z+t =y/z+t+x = z/t+x+y = t/x+y+z la so nguyen.
tham khảo: https://hoidap247.com/cau-hoi/1025167
cho cac so x,y,z thoa man x/2013=y/2014=z/2015 chung minh rang 4(x-y)(y-z)=(z-x)^2
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z
chung minh bieu thuc sau co gia tri nguyen
p=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)+(t+x/y+z)
Chung minh rang bieu thuc:
A=4x(x+y)(x+y+z)(x+z)+x^2.z^2
Cho x;y;z;t€Z
Chung minh (x-y)(x-z)(x-t)(y-z)(y-t)(z-t) chia het cho 12
Cach lam nua nhe
cho x,y,z>0 thoa man x+y+z<=1 chung minh rang 17(x+y+z)+2(1/x+1/y+1/z)=>35
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)
Chứng minh tương tự, ta có
\(18y+\frac{2}{y}\ge12\)
\(18z+\frac{2}{z}\ge12\)
Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)
Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)
Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)
\(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)