CMR:
1.3.5...19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
\(CMR:1.3.5...19=\)\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Ta có: \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}....\frac{20}{2}=\frac{11.12.13....20}{2^{10}}=\frac{11.13.15....19.\left(12.14.16.18.20\right)}{2^{10}}=\)
\(=\frac{11.13.15....19.\left(\left(3.2^2\right).\left(7.2\right).\left(2^4\right).\left(9.2\right).\left(5.2^2\right)\right)}{2^{10}}=\frac{11.13.15....19.\left(3.5.7.9\right).2^{10}}{2^{10}}=\)
\(=1.3.5.7.9.11.13.15....19\left(Đpcm\right)\)
a) CMR: 1.3.5...19=\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Chứng minh rằng \(1.3.5....19\) = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)
Đặt \(A=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
\(=\frac{\left(11.13.15.17.19\right).12.14.16.18.20}{2^{10}}\)
\(\frac{\left(11.13.15.17.19\right).\left(3.2^2\right).\left(7.2^1\right).2^4.\left(9.2^1\right).\left(5.2^2\right)}{2^{10}}\)
\(=\frac{\left(1.3.5.7.9.11.13.15.17.19\right).2^{10}}{2^{10}}\)
\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)=11.12.13.....20
Để 1.3.5......19=11.12.13...20 thì \(\frac{1.3.5....19}{11.12.13....20}\)vì 1;3;5;..;19 là ~ số lẽ nên phần mẫu nhưng số lẽ có trên tử sẽ lược bỏ đi còn: \(\frac{1.3.5.7.9}{12.14.16.18.20}=\frac{1.3.5.7.3.3}{2.2.3.7.2.2.2.2.2.2.3.3.2.2.5}=>\frac{1}{2^{10}}\)
=> 1.3.5.....19=\(\frac{11}{2}.\frac{12}{2}....\frac{20}{2}\)vô lí
mk hok lóp 7 dzô làm lóp 6 hơi ngượng nên chắc sai dữ lắm đây
CMR \(1.3.5.....99=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{100}{2}\)
1.
a) CMR: 1.3.5...19=\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
b) Tìm số tự nhiên có 2 chữ số biết số đó gấp đôi tích các chứ số của nó.
c) Tìm số tự nhiên 2<30 để các số 3n+a và 5n+1 có ước chung khác 1
Ta có: \(1.3.5.7....19=\frac{1}{1}.\frac{3}{1}.\frac{5}{1}.\frac{7}{1}....\frac{19}{1}\)
Mà \(1.3.5.7....19=\frac{11.12.13....20}{2.2.2....2}\)
\(\Rightarrow\frac{1}{1}.\frac{3}{1}.\frac{5}{1}.\frac{7}{1}....\frac{19}{1}=\frac{11.12.13....20}{2.2.2...2}\)
\(\Rightarrow1.3.5.7...19=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)(đpcm)
P/s: Mấy bọn ko biết giải thì câm mồm vào đừng chọn sai nha!!! (Mình không nói bạn Đức Minh Nguyễn nha)
CMR:
1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{13}+...+\frac{1}{20}\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)=\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)=\)
= 1/11 + 1/12 +1/13+...+1/20 (đpcm)
CMR: 1.3.5....19 = 11/2 . 12/2 . 13/2 ... 20/2
bài này cô giáo toán lop mik cho làm nhưng cô chưa giải nên mik ko giup cậu đươc
1/TINH
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(\frac{2^3}{1.3}.\frac{3^2}{2.4}.\frac{4^2^{^{^{ }}}}{3.5}......\frac{99^2}{98.100}\)
2/CMR
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+...+\frac{1}{10000}< \frac{1}{2}\)
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)