1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\frac{a}{b}\) > \(\frac{a+c}{b+c}\)
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\frac{a}{b}\)> \(\frac{a+c}{b+c}\)
2/ So sánh 2 số hữu tỉ A=\(\frac{5^{2013}+17}{5^{2011}+17}\)và B=\(\frac{5^{2011}+1}{5^{2009}+1}\)
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Mini game : Thử trí IQ
Cho a,b,c,d,e là các số hữu tỉ khác 0. Các số hữu tỉ d và e phải thoả mãn điều kiện gì để từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)có thể suy ra tỉ lệ thức
\(\frac{a}{b}=\frac{a+c}{b+e}\)
Ai cảm thấy hào hứng thì kb với mình và tick cho mình nha
Không nhớ cách làm nữa :)) lớp 7 rồi mà :))
Ta có a/b = c/d
ADTCDTSBN , ta có
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy để suy ra TLT \(\frac{a}{b}=\frac{a+c}{b+e}\)thì e = d
cho a , b, c khác 0 và a+b+c khác 0 thoả mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
chứng minh rằng trong 3 số a,b,c có 2 số đối nhau từ đó suy ra 1/(a^2009) + 1/(b^2009) + 1/(c^2009) = 1/(a^2009+b^2009+c^2009)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Ta có: \(a=b+c\Rightarrow c=a-b\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)
=> Là một số hữu tỉ do a,b,c là số hữu tỉ
Cho a, b, c là các số thoả mãn điều kiện a=b+c
Chứng minh rằng: \(\frac{a^3+b^3}{a^3+c^3}\)=\(\frac{a+b}{a+c}\)
\(\text{Đ}k:a=b+c\)
\(min=2=1+1\)
\(\Rightarrow a=2,b=1,c=1\)
\(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\Rightarrow\frac{2^3+1^3}{2^3+1^3}=\frac{2+1}{2+1}\Leftrightarrow1=1\)
\(\Rightarrow\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)
Xét VT ta có :
\(VT=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
\(=\frac{\left(a+b\right)\left[\left(b+c\right)^2-\left(b+c\right)b+b^2\right]}{\left(a+c\right)\left[\left(b+c\right)^2-\left(b+c\right)c+c^2\right]}\)
\(=\frac{\left(a+b\right)\left(b^2+2bc+c^2-b^2-bc+b^2\right)}{\left(a+c\right)\left(b^2+2bc+c^2-bc-c^2+c^2\right)}\)
\(=\frac{\left(a+b\right)\left(b^2+bc+c^2\right)}{\left(a+c\right)\left(b^2+bc+c^2\right)}\)
\(=\frac{a+b}{a+c}=VP\)
=> đpcm
Cho các số a,b,c khác 0 thỏa mãn điều kiện a+b+c=0
Chứng Minh Rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\frac{1}{bc}+2\frac{1}{ac}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=0\\ 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\\ \frac{abc^2+a^2bc+ab^2c}{a^2b^2c^2}=0\)
\(abc^2+a^2bc+ab^2c=0\\ abc\left(c+a+b\right)=0\)
\(a+b+c=0\)(DPCM)
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
Cho a,b,c là các số hữu tỉ thoả mãn điều kiện : ab + bc + ca = 1 , Cmr : (1+a^2)(1+b^2)(1+c^2) là bình phương của một số hữu tỉ .?
\(ab+bc+ac=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\dfrac{a}{b}\)>.\(\dfrac{a+c}{b+c}\)