Cho tam giác ABC có \(\widehat{A}\)= 90 độ. Kẻ AH vuông BC. CMR: AB+ AC < AH+ BC
#giúpmknha
Tam giác ABC có góc A bằng 90 độ .kẻ AH vuông góc với BC.trên AB,BC lấy P, Q sao cho CP=CA,AQ=AH.
CMR: a/ PQ vuông góc với AB
b/ AC+BC< BC+AH
cho tam giác ABC có góc A bằng 90 độ, vẽ AH vuông góc BC CMR AH + BC > AB+AC
cho tam giác ABC( A = 90 độ ) vẽ AH vuông góc BC ( H thuộc BC). CMR: AH+BC>AB+AC
mình vẽ trên máy tính nên hơi xấu 1 xíu. Để bài này làm dễ hơn thì ta nên kẻ thêm 2 đường.
Kẻ thêm AK sao cho AB=BK=AK.
Kẻ thêm KM vuông góc với AC.
Xét tam giác MKC vuông tại M có: KC>MC( vì cạnh huyền lớn nhất)
Mà AM= AH; AB=BK(gt)
=> AB+AC<BC+AH
(vì KC+BK+AH >MC+AM+AB).
TICK VÀ CẢM ƠN NHÉ> CHÚC BẠN HỌC TỐT.
Cho tam giác ABC có góc A > 90 độ. Kẻ AH vuông góc với BC tại H. CMR: AB^2 - AC^2 = BH^2 - HC^2
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)
\(=AH^2+BH^2-AH^2-CH^2\)
\(=BH^2-HC^2\)(đpcm)
Cho tam giác ABC có góc BAC= 90 độ. Kẻ AH vuông góc BC ( H thuộc BC). Kẻ HE vuông góc AC( E thuộc AC). CMR AB song song HE.Cho góc ABC=60 độ. Tính góc AHE, BAH.
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \(\widehat{B}=60^o\); \(\widehat{BHA}=90^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
Do AB//HE
=> \(\widehat{BAH}=\widehat{AHE}=30^o\)
Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)
Trong tam giác vuông BAH có \widehat{B}=60^oB=60o; \widehat{BHA}=90^oBHA=90o
\Rightarrow\widehat{BAH}=30^o⇒BAH=30o
Do AB//HE
=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o
Cho tam giác ABC có A bằng 90 độ Kẻ AH vuông góc với BC ,biết AB = 13 ,AH = 5 .tính BC,BH,AC,CH
Áp dụng định lý Pi-ta-go cho \(\Delta ABH\)vuông tại H ta có :
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH^2=13^2-5^2\)
\(\Leftrightarrow BH^2=144\)
\(\Leftrightarrow BH=12\)
Áp dụng hệ thức lượng trong tam giác ta có :
\(AB^2=BC.BH\)
\(\Leftrightarrow13^2=BC.12\)
\(\Leftrightarrow BC=\frac{169}{12}\)
Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=\left(\frac{169}{12}\right)^2-13^2\)
\(\Leftrightarrow AC^2=\frac{4225}{144}\)
\(\Leftrightarrow AC=\frac{65}{12}\)
Ta có : \(BH+CH=BC\)
\(\Leftrightarrow CH=BC-BH=\frac{169}{12}-12=\frac{25}{12}\)
Vậy \(BC=\frac{169}{12};BH=12;AC=\frac{65}{12};CH=\frac{25}{12}\)
Bài 1: Cho tam giác abc vuông tại a, ah vuông góc bc taịh, lấy d thuộc ah, e thuộc tia đối ha sao cho he=ad, kẻ đường vuông góc với ad tại d cắt ac tại f. CMR: góc bef=90 độ
Bài 2: Cho tam giác abc vuông tại a, đường cao ah. Hm vuông góc ac, e thuộc tia đối mh sao cho am=em. Kẻ hn vuông góc ab, d thuộc tia đối nh sao cho nh=nd. CMR: d,a,e thẳng hàng
Bài 3 Cho tam giác abc, m là trung điểm bc, ab=6, ac=10,am=4. CMR: góc mab = 90 độ
cố gắng giúp mình nha
Cho ta giác ABC có góc A= 90. Kẻ AH vuông góc BC (H thuộc BC) . Cmr : AH+HB>AB+AC
Cho tam giác ABC vuông tại A có AB<AC trên cạch BC lấy điểm D sao cho AB = BD,kẻ AH vuông góc với BC,kẻ DK vuông góc với AC.
a)Chứng minh:\(\widehat{BAD}=\widehat{BDA}\) b)C/M:AD là tia phân giác của \(\widehat{HAC}\)
c)C/M: AK=AH d)C/M:AB+AC<BC+AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
chúc bn học tốt