Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Frisk
Xem chi tiết
Hoang Anh Tuan TH Nguyet...
Xem chi tiết
Nguyễn Bảo Trâm
Xem chi tiết
Nguyễn Thanh Bình
9 tháng 7 2021 lúc 8:43

mình vẽ trên máy tính nên hơi xấu 1 xíu. Để bài này làm dễ hơn thì ta nên kẻ thêm 2 đường.

Kẻ thêm AK sao cho AB=BK=AK.

Kẻ thêm KM vuông góc với AC.

Xét tam giác MKC vuông tại M có:  KC>MC( vì cạnh huyền lớn nhất)

 Mà AM= AH; AB=BK(gt)

=> AB+AC<BC+AH

(vì KC+BK+AH >MC+AM+AB).

TICK VÀ CẢM ƠN NHÉ> CHÚC BẠN HỌC TỐT.haha

 

Thanh Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:54

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)

\(=AH^2+BH^2-AH^2-CH^2\)

\(=BH^2-HC^2\)(đpcm)

dao xuan tung
Xem chi tiết
๛Ňɠũ Vị Čáէツ
28 tháng 9 2019 lúc 22:38

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \(\widehat{B}=60^o\)\(\widehat{BHA}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

   Do AB//HE

=> \(\widehat{BAH}=\widehat{AHE}=30^o\)

Hoàng hôn  ( Cool Team )
29 tháng 9 2019 lúc 10:04

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \widehat{B}=60^oB=60o\widehat{BHA}=90^oBHA=90o

\Rightarrow\widehat{BAH}=30^o⇒BAH=30o

   Do AB//HE

=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o

bùi thúy hằng
Xem chi tiết
_Guiltykamikk_
2 tháng 8 2018 lúc 16:24

Áp dụng định lý Pi-ta-go cho  \(\Delta ABH\)vuông tại H ta có : 

\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow BH^2=13^2-5^2\)

\(\Leftrightarrow BH^2=144\)

\(\Leftrightarrow BH=12\)

Áp dụng hệ thức lượng trong tam giác ta có :

\(AB^2=BC.BH\)

\(\Leftrightarrow13^2=BC.12\)

\(\Leftrightarrow BC=\frac{169}{12}\)

Áp dụng định lí Py-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=\left(\frac{169}{12}\right)^2-13^2\)

\(\Leftrightarrow AC^2=\frac{4225}{144}\)

\(\Leftrightarrow AC=\frac{65}{12}\)

Ta có :  \(BH+CH=BC\)

\(\Leftrightarrow CH=BC-BH=\frac{169}{12}-12=\frac{25}{12}\)

Vậy  \(BC=\frac{169}{12};BH=12;AC=\frac{65}{12};CH=\frac{25}{12}\)

bùi thúy hằng
2 tháng 8 2018 lúc 16:36

cảm ơn

nguyễn linh
Xem chi tiết
Phạm Hồng Tuyết Trinh
Xem chi tiết
Trần Đức Vinh
Xem chi tiết
cụ nhất kokushibo
21 tháng 7 2023 lúc 7:23

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

cụ nhất kokushibo
21 tháng 7 2023 lúc 7:27

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

cụ nhất kokushibo
21 tháng 7 2023 lúc 7:28

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

chúc bn học tốt