cho phương trình x^2+bx+c=0 và x^2+b1x+c1=0 với b;c;b1;c1 thuộc Z sao cho (b-b1)^2+(c-c1)^2>0 chúng mình nếu cả 2 có 1 nghiệm chứng thí nghiệm thứ 2 là 2 số nguyên phân biệt
cho P=\(\frac{ã^2 bx c}{a1x^2 b1x^2 c1}\) . CMN :\(\frac{a}{a1}\)=\(\frac{b}{b1}\)=\(\frac{c}{c1}\) thì giá trị của P không phụ thuộc vào x
Cho các phương trình\(x^2+bx+c=0\) và \(x^2+cx+b=0\) trong đó \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\)
Chứng minh
rằng ít nhất một trong các phương trình trên có nghiệm.
\(\Delta_1=b^2-4c\) ; \(\Delta_2=c^2-4b\)
\(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow bc=2\left(b+c\right)\)
Do đó:
\(\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)
\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm
\(\Rightarrow\) Ít nhất một trong 2 phương trình trên có nghiệm
Cho phương trình: ax2+bx+c=0 ( a và c khác 0) có nghiệm x1>0 và nghiệm còn lại âm.
Cmr: phương trình: cx2+bx+a=0 có nghiệm x2>0 và x1+x2+x1.x2 >= 3
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
Cho a , b , c là các số thực phân biệt sao cho các phương trình : x2 + ax + 1 = 0 và x2 + bx + c = 0 có nghiệm chung đồng thời các phương trình x2 + x + a = 0 và x2 + cx + b = 0 cũng có nhgieemj chung . Hãy tìm tổng a + b + c
a) ax^2 + bx + c = 0
Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt.
∆ > 0
=> b^2 - 4ac > 0
x1 + x2 = -b/a > 0
=> b và a trái dấu
x1.x2 = c/a > 0
=> c và a cùng dấu
Từ đó ta xét phương trình cx^2 + bx^2 + a = 0
∆ = b^2 - 4ac >0
x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0
x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0
=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4
Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt.
b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si.
x1 + x2 ≥ 2√( x1.x2 )
x3 + x4 ≥ 2√( x3x4 )
=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#)
Tiếp tục côsi cho 2 số không âm ta có
√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##)
Theo a ta có
x1.x2 = c/a
x3.x4 = a/c
=> ( x1.x2 )( x3.x4 ) = 1
=> 2√[√( x1.x2 )( x3.x4 ) ] = 2
Từ (#) và (##) ta có đúng k bn
Cho a,b,c là 3 số phân biệt sao cho các phương trình: x2+ax+1=0 và x2+bx+c=0 có nghiệm chung. Đồng thời các phương trình x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.
Tính giá trị của biểu thức P=a+b+c
Trong mặt phẳng tọa độ Oxy, cho A(-1;3) và B(3;1), C(2;-2)
a) Viết phương trình đường trung tuyến CM của tam giác ABC
b) Viết phương trình đường tròn (C) đi qua A, B và có tâm I thuộc đường thẳng (): 3x-y-2=0
c) Viết phương trình đường thẳng (d1), biết (d1) song song với (d2): x-2y-1=0 và (d1) tiếp xúc với (C1): x^2+y^2-6x+4y+8=0
Cho phương trình: \(x^3+ax^2+bx-1=0\) ( với x là ẩn số). Tìm các giá trị của a,b để phương trình nhận x = -1 và x = \(1+\sqrt{2}\) là nghiệm.
Cho 2 phương trình x^2+ax+12=0 và x^2+bx+7=0 có nghiệm chung. Khi đó A= 2a+3b+4 min=?
Cho a,b là nghiệm của phương trình x^2+5x-8=0 có a/b+1 và b/a+1 là