Cho tam giác ABC. O là một điểm nắm trong tam giác. CM (AB+AC+ BC)/2 < OA + OB + OC<AB + AC + CB
Cho tam giác ABC có AB = BC = AC. Gọi O là một điểm bất kỳ nằm trong tam giác sao cho OA = OB = OC. Chứng minh rằng O là giao điểm 3 tia phân giác của các góc A; B; C.
Vì OA=OB=OC
nên O là tâm đường tròn ngoại tiếp ΔABC
mà ΔABC đều
nên O là giao điểm của ba tia phân giác của các góc A,B,C
Cho tam giác ABC biết AB=BC=AC. Giả sử O nằm trong tam giác đó sao cho OA=OB=OC. CMR o là giao điểm của ti
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Cho O là một điểm nằm trong tam giác ABC. Chứng minh rằng:
\(\dfrac{AB+BC+CA}{2}\) < OA + OB + OC < AB + BC + CA
Ta có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC < AB + BC + CA (vì OC < BC) Vậy ta có: OA + OB + OC < AB + BC + CA (1) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OC) + OB = AC + OB < AB + BC + CA (vì OB < AB) Vậy ta có: OA + OB + OC < AB + BC + CA (2) Từ (1) và (2), ta có: OA + OB + OC < AB + BC + CA Tương tự, ta có: OA + OB + OC = OA + OB + OC = (OB + OC) + OA = BC + OA > 0A + OB + OC (vì BC > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (3) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC > 0A + OB + OC (vì AB > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (4) Từ (3) và (4), ta có: OA + OB + OC > 0A + OB + OC Vậy ta có: 0A + OB + OC < AB + BC + CA < OA + OB + OC
Cho tam giác ABC có AB<AC. Gọi E ∈ AC sao cho AB=CE. Gọi O là một điểm nằm ở trong tam giác sao cho OA=OC,OB=OE. Khi đó:
A. Δ A O B = Δ C E O
B. Δ A O B = Δ C O E
C. A O B ^ = O E C ^
D. A O B ^ = O E C ^
Cho O là 1 điểm nằm trong tam giác đều ABC,qua O kẻ OI//AB(I thuộc AC),OK//AC(K thuộc BC),OJ//BC(J thuộc AB)
Chứng minh chu vi tam giác IJK=OA+OB+OC
Cho tam giác ABC có AB<AC. Gọi E sao cho E thuốc AC. Gọi O là một điểm nằm trong tam giác sao cho OA=OC, OB=OE. Khi đó
A. ∆ A O B = ∆ C E O
B. ∆ A O B = ∆ C O E
C. A O B ^ = O E C ^
D. A B O ^ = O C E ^
Bài 1: Cho Tam giác ABC, D thuộc tia đối CB, E thuộc tia đối CA. C/M AB+DE<AE+BD
Bài 2: Cho tam giác ABC, O là điểm bất kì trong tam giác. C/m ( AB+AC+CB)/2< OA+OB+OC< AB+AC+BC
Bài 3:Cho tam giác ABC, M là TĐ BC. C/M Ab+AC > 2 AM
Bài 6: Cho tam giác ABC, D là điểm bất kỳ trong tam giác.Chứng minh (AB+AC+BC)/2 < oa+ ob+ oc< ab+ac+bc