Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
con cac
Xem chi tiết
Đào Trí Bình
16 tháng 8 2023 lúc 16:04

ko

con cac
Xem chi tiết
Nguyễn Xuân Thành
16 tháng 8 2023 lúc 16:44

tên bạn kì v

Vĩ Vĩ
Xem chi tiết
Nguyễn Đức Trí
16 tháng 8 2023 lúc 21:50

\(D=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)

mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)

\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)

Trịnh Dung
Xem chi tiết
Trịnh Dung
20 tháng 8 2016 lúc 15:48

RẤT MONG CÓ AI ĐỌC QUA, LÀM ƠN HÃY GIÚP MÌNH T^T

Hà Nguyên Đặng Lê
Xem chi tiết

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

Thanh Loan Trần
Xem chi tiết
Dang Tung
23 tháng 10 2023 lúc 6:55

x - y = 2 => x = y + 2 thay vào bt C, ta đc :

C = 2(y+2)^2 - y

= 2(y^2 + 4y + 4) - y

= 2(y^2 + 7/2 .y + 2)

= 2(y+7/4)^2 - 17/8 ≥ -17/8

=> Min = -17/8 tại y = -7/4, x =1/4

DUX Mobile
Xem chi tiết
DUX Mobile
Xem chi tiết
Lê Thùy Trang
Xem chi tiết
Đinh Đức Hùng
3 tháng 1 2017 lúc 15:49

a ) Ta có : |2 - 3x| ≥ 0 √ x => - |2 - 3x| ≤ 0 √ x

=> - |2 - 3x| + 1/2 ≤ 1/2 √ x

Dấu "=" xảy ra khi - |2 - 3x| = 0 <=> x = 2/3

Vậy Cmax là 1/2 tại x = 2/3

Ta có : |2x + 4| ≥ 0 √ x => - |2x + 4| ≤ 0 √ x

=> - 3 - |2x + 4| ≤ - 3 √ x

Dấu "=" xảy ra khi - |2x + 4| = 0 <=> x = 2

Vậy Dmax là - 3 tại x = 2